Under the Framework of a Green Economy: A Study on the Prospects of China's International Trade Development

Yifei Wang
International Business School, Jinan University, Zhuhai 519000, China
1316902189@qq.com

Abstract. China has made significant progress in green economic development, but it also faces challenges such as green trade. This study provides an overall analysis of the development pattern of green trade in eastern, central, and western China. It then focuses on the eastern region, using specific foreign trade data from the Jiangsu, Zhejiang, and Shanghai areas to analyze the impact of foreign trade on the efficiency of the green economy. The study aims to explore the prospects of China's international trade development in the context of a green economy. The research reveals that China has made positive strides in both import and export trade and environmental protection. However, there is still a need to enhance trade balance, promote trade development in central and western regions, and strengthen environmental management and regulation by businesses in terms of ecological benefits.

Keywords: Green Economy, Foreign Trade, Green Economic Efficiency, Environmental Governance.

1. Presentation of problem

The 20th National Congress of the Communist Party of China proposed, 'By 2035, China's overall development goal is to promote a widespread adoption of green production and lifestyles, achieve a peak in carbon emissions followed by a stable reduction, fundamentally improve the ecological environment, and basically realize the goal of creating a Beautiful China.'[1] Building upon the 19th National Congress, this added requirements for the development of green industries. This demonstrates China's increasing emphasis on the development of a green economy. However, from a global perspective, there are still technical challenges, financial support, and talent development issues in the development of the green economy. In the context of global trade, China is increasingly becoming a major player in green economic development, facing both opportunities and challenges in green trade. China is moving towards a green, low-carbon, and sustainable development, which provides opportunities for its green economic development.

China has made significant progress in the concept of coordinated development of green economy. Since the 18th National Congress, China has been implementing the ecological development concept of 'Green mountains and clear waters are invaluable assets,' which has driven the development of trade in the eastern coastal regions and promoted the development of the green and circular economy. At the same time, China has also achieved significant results in green technological innovation, particularly in areas such as clean energy. This has made China one of the world's largest markets for solar energy, wind energy, and new energy vehicles. Nevertheless, China faces some challenges in green trade. Some countries or regions have adopted green trade barriers, which may negatively impact China's green trade. Firstly, China faces the challenge of misalignment between trade development and green development, with green economic development lacking a cost advantage compared to traditional industries. Secondly, there is still a gap between China and developed countries in green technology research and development, as well as a shortage of skilled professionals with in-depth knowledge and expertise. Thirdly, China's traditional approach to foreign trade is export-focused, which may lead to a neglect of the import and assimilation of foreign green technologies and environmentally friendly products, potentially resulting in a lag in the innovation and competitiveness of domestic industries in the green sector. In summary, China has made positive progress in the development of the green economy, but still faces several challenges. By strengthening
green technology research and development, cultivating specialized talent, and changing traditional foreign trade mindsets, China can further promote the development of the green economy and address the challenges of green trade.

2. Theoretical basis and literature review

2.1. Theoretical basis

The concept of a green economy was introduced in the late 1970s, as a development model that integrates ecological considerations into the overall planning of national economic development. The green economy emphasizes the coordination of economic growth and environmental protection. This is in line with the concept of synergy proposed by the German physicist, Hermann Haken, in the early 1970s[2]. The green economy establishes a development strategy that encompasses the economy, resource environment, and society. Economic development can provide financial and technological support for environmental governance, and in turn, a healthy resource environment provides the spatial conditions for economic development. However, pollutants generated by economic activities can have adverse effects on the resource environment. Since resources are finite, when the resource environment cannot meet the demands of economic development, it may impose limitations on the economic system. Therefore, there is both competition and cooperation among society, the economy, and the resource environment. Balancing these relationships correctly is essential for achieving sustainability.

2.2. Literature review

2.2.1 Research on the Development of the Green Economy

Scholars from both domestic and international backgrounds have conducted in-depth research on the meaning of green economic development. According to the research by Zhang Ye[3] (2002), the green economy differs from traditional economic growth models as it encompasses various aspects of the national economy. The development of the green economy is seen as a prerequisite for achieving sustainable development. This perspective is similar to that of Li Fuduo[4] (2019), who points out that the green economy is not merely an economic concept; it is directly related to economic strength, ecological strength, cultural strength, and other aspects. Tong Yun and others[5] (2021) have defined China's current green development goals. Currently, China's key focus in achieving green development is striving to accomplish the dual objectives of economic growth and environmental protection. These scholars all believe that the development of the green economy necessitates consideration of the environment and natural resources, making it an economic development approach that promotes the harmonious development of society, the economy, and the environment.

2.2.2 International Trade and the Environment: A Study on the Multiple Effects of Scale, Structure, and Technology

Grossman & Krueger[6] (1991) conducted an in-depth study on the multiple effects of trade on the environment, breaking them down into three major aspects: scale effects, structural effects, and technological effects. They pointed out that scale effects might lead to environmental degradation, while structural effects and technological effects could bring about environmental improvements. Furthermore, Zhang Qian and Liang Shuxia[7] (2020) confirmed a significant positive correlation between industrial structure and environmental quality. At the same time, Kang Yimin's[8] (2019) research also indicated that advancements in technology contribute to reducing environmental pollution, highlighting the significant role of technological effects in environmental protection.

2.2.3 Research on Regional Trade and Environmental Impact Differences

Li Yanjun[9] (2013) conducted an empirical study and pointed out that trade openness has had a positive impact on the green economic efficiency in the eastern region, but in the long term, it has had negative effects on the western region. Furthermore, in a study by Fu Xin and Zhang
Yun10(2019), the analysis of the environmental effects of foreign trade in 30 provinces in mainland China revealed that the relationship between trade and the environment is not consistent in different regions. Improving the quality of trade helps reduce environmental pollution, but the extent of this reduction varies across different regions. The eastern region stands out for its prominent environmental improvement effects.

The above three segments showcase how various scholars have provided a comprehensive exploration of the complex interaction between the economy and the environment, from a macro-level perspective of the nation's trade and its impact on the environment to the relationship between trade conditions in different regions or provinces and green efficiency. However, the regional scope varies at the provincial or municipal level, and some studies focus only on specific provinces or cities. This presents a new research approach for our study, following the principle of moving from the general to the specific. We have chosen the Jiangsu-Zhejiang-Shanghai region, which has close economic ties, as an example to investigate the prospects of China's international trade development in the context of a green economy.

3. Research on the Development Trends of Green Trade in China

3.1. The Current State of China's Foreign Trade

At present, China has made significant progress in its foreign trade, but the issue of regional trade imbalances persists. On the one hand, the total volume of China's imports and exports has continued to grow, increasing from 30 trillion RMB in 2018 to 40 trillion RMB in 2022, highlighting its status as a global trading powerhouse. Furthermore, there have been improvements in the structure of China's foreign trade. The rising proportion of high-tech product exports indicates that China's foreign trade is moving towards diversification and high-value-added products. Likewise, the increase in general trade is helping to introduce advanced technology, promote industrial upgrades, and stimulate innovation. On the other hand, there are disparities in trade among different regions. The eastern regions, represented by Guangdong, Jiangsu, Zhejiang, and Shanghai, contribute the majority of the total import and export trade. The problem of regional trade imbalances still exists.

3.1.1 China's total import and export trade has steadily increased

In recent years, China has seen a steady increase in its total import and export trade volume. For example, as shown in Figure 1, based on the foreign trade data from the past five years, China's total import and export volume rose from just over 30 trillion RMB in 2018 to 39 trillion RMB in 2021, and in 2022, it exceeded the milestone of 40 trillion RMB. This indicates that China continues to leverage its position as a global trading powerhouse. When comparing the scale of China's commodity imports and exports in recent years, China has consistently maintained a trade surplus, with commodity exports playing a significant role in China's foreign trade.
3.1.2 Optimization of China's Foreign Trade Structure

In addition to the continuous increase in the total import and export trade volume, China has also made significant improvements in the structure of its commodity import and export trade. There have been substantial changes. As shown in Figure 2, from 2018 to 2021, industrial manufactured goods still accounted for more than 80% of the total trade volume. However, the proportion of high-tech product imports and exports in the total commodity import and export trade volume is steadily increasing, while the proportion of primary product trade volume is on the decline. This indicates that China's foreign trade structure is continuously improving, with a growing emphasis on high-tech product trade. China's breakthroughs in high-tech fields are beneficial for its independent innovation capacity, further promoting high-level openness to the outside world, and constructing a new development pattern centered around the 'domestic circulation as the mainstay and dual circulation at home and abroad reinforcing each other,' while continuously enhancing China's role in the global value chain.

Source: Compiled by the author from the 'China Statistical Yearbook' and the National Bureau of Statistics.
3.1.3 Upgrading of China's Foreign Trade Methods

In recent years, China has primarily chosen general trade as the main mode of foreign trade, with processing trade as a secondary option, and general trade has been steadily increasing. As shown in Figure 3, in 2022, the total import and export volume of general trade in China reached an impressive 63.7% of the total trade volume. This indicates that China is promoting economic structural upgrades and industrial transformation. Increasing the use of general trade for imports and exports can elevate the position of Chinese enterprises in the international market. Enterprises engaging in general trade need to participate more in high-value-added trade activities. This trade method involves direct cross-border transactions, and the value chain of products and services is more controlled by domestic companies, rather than just simple processing and assembly. This enables China to introduce more advanced technology, equipment, and products, thereby promoting the upgrading of domestic industries. Furthermore, compared to processing trade, general trade contributes to enhancing the independent innovation and research and development capabilities of Chinese enterprises, fostering technological innovation.

![Figure 3: Structure of China's Commodity Imports and Exports from 2018 to 2021](image)

Source: Compiled by the author from the 'China Statistical Yearbook' and the National Bureau of Statistics.

3.1.4 Comparison of Regional Trade Volumes

To gain a better understanding of the contributions made by different regions of China in terms of foreign trade and to compare the relative sizes of these contributions, this study conducts a horizontal and vertical comparison of China's foreign trade based on the three major regions: Central, Eastern, and Western. As shown in Figure 4, there are significant differences in the total import and export trade volumes in these three regions. Looking at trade data from 2018 to 2021, it's evident that the import and export trade volume in the eastern region significantly surpasses that of the central and western regions, accounting for over 80% of China's overall import and export trade volume. This indicates that the eastern region holds a significant advantage in China's foreign trade. Taking 2021 as an example, the top four contributors to the import and export trade volume in the eastern region are Guangdong, Jiangsu, Zhejiang, and Shanghai. Not only are these regions economically developed, but their close geographical proximity has created a relatively dense economic belt. The combined contribution of these regions to the total import and export trade volume in that year was 34.5%. They can take advantage of the convenience brought by their geographical proximity in terms of technology spillover and economies of scale. In summary, the total import and export trade volume in China is primarily contributed by the eastern region, with a concentration of contributions from economically developed provinces and cities like Guangdong, Zhejiang, Shanghai, and Jiangsu. In contrast, the
central and western regions have a slower pace of development in foreign trade compared to the eastern region.

Figure 4: Total Import and Export Trade Volume in China's Central and Western Regions from 2018 to 2021

Source: Compiled by the author from the 'China Statistical Yearbook' and the National Bureau of Statistics.

3.2. Research on the Development of Green Technologies

The classification of green patents provided by the State Intellectual Property Office, as outlined in the 'China Green Patent Statistics Report (2014-2017)' by Sun Xiaoting. Using keywords such as 'pollution control, pollution treatment, environmental materials, alternative energy, energy saving and emission reduction, green agriculture, green forestry, recycling, new energy, green construction, and green management,' we collected and summarized the number of green patents granted in 30 provinces, municipalities, and autonomous regions of China from 2018 to 2022.

Figure 5 displays the number of green patents granted in the three regions of Central, Eastern, and Western China over the past five years, starting from 2018. From the graph, we can observe that the number of green patents granted in China has been increasing year by year, indicating significant progress in China's investment and research and development in the field of green technologies. Notably, the development of green technologies in the eastern coastal regions has been particularly remarkable, with over 60% of the national total of green patents granted originating from this region. This suggests that the eastern region is leading the way in driving the development of green technologies in China. This could be attributed to the fact that the eastern region possesses a more abundant resource and technological foundation to support the innovation and development of green technologies. Moreover, the eastern region is typically more economically developed and offers more market opportunities, encouraging enterprises to invest in green technology. This regional imbalance reminds us that in the process of green technology development in China, more collaborative efforts and resource allocation are needed to ensure that all regions of the country can benefit from the progress in green technologies.
Figure 5: Number of Green Patents Granted in Eastern, Central, and Western Regions of China from 2018 to 2022

Source: Compiled by the author from the State Intellectual Property Office patent retrieval platform.

3.3. Analysis of the Current State of Green Economic Efficiency in the Jiangsu, Zhejiang, and Shanghai Region

Based on the above research, the eastern region has a significant advantage in China’s foreign trade, with the combined import and export trade volume of the Jiangsu, Zhejiang, and Shanghai region reaching 34.5% of the total trade volume in 2021. This region can leverage the convenience of technological spillover and economies of scale brought about by its geographical advantage. Now, taking the specific economic indicators of the Jiangsu, Zhejiang, and Shanghai regions from the 18th National Congress of the Communist Party of China to the present (2012-2021) as an example, we calculate the green economic efficiency of these three regions and analyze the impact of foreign trade on green economic efficiency. This analysis can provide valuable insights for the development of green trade nationwide.

3.3.1 Calculation of Green Economic Efficiency

Green economic efficiency is an indicator that examines the coordination of expected outputs such as economic development and undesired outputs such as environmental pollution. It measures how to achieve economic growth to the greatest extent while reducing resource consumption and environmental pollution in the process. This study uses the SBM model proposed by Tone as the benchmark model, taking into account both the expected output, such as economic benefits, and undesired output, such as environmental pollution indicators. Using relevant data from regional yearbooks, the calculation of green economic efficiency for the Jiangsu, Zhejiang, and Shanghai regions from 2012 to 2021, since the 18th National Congress of the Communist Party of China, is conducted. The specific system of input and output indicators is constructed as shown in Table 1.

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Green Economic Efficiency Measurement Indicator System</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indicator</td>
<td>Indicator Category</td>
</tr>
<tr>
<td>Output Indicators</td>
<td>Expected Output</td>
</tr>
<tr>
<td></td>
<td>Non-Expected Output</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Input Indicators</td>
<td>Capital Input</td>
</tr>
<tr>
<td></td>
<td>Labor Input</td>
</tr>
</tbody>
</table>
Using Stata software for calculation, the results are shown in Figure 6. The annual measurements of green economic efficiency in the Jiangsu, Zhejiang, and Shanghai regions have shown a generally upward trend, indicating that these regions are increasingly focused on green economic development to achieve the sustainability of economic and social development. However, there was a noticeable decrease in the measurement of green economic efficiency in Zhejiang Province in 2017. This result could be attributed to increased demand in the province in 2017, which stimulated increased industrial production, ultimately leading to increased emissions. It is also possible that the government relaxed emission control policies for a period to encourage economic growth. In summary, the continuous growth of annual measurements of green economic efficiency in the Jiangsu, Zhejiang, and Shanghai regions reflects the high importance placed by the Chinese government, businesses, and society on sustainable development and environmental protection. This trend has promoted technological innovation, changes in market demand, and policy support. It contributes to achieving a balance between economic prosperity and environmental protection, laying a solid foundation for future sustainable development. This will help better address global environmental challenges and achieve long-term green prosperity.

![Figure 6 Green Economic Efficiency (GEE) Values in the Jiangsu, Zhejiang, and Shanghai Regions from 2012 to 2021](image)

Source: Compiled from various regional yearbooks for the years 2012-2022 by the author

3.3.2 Empirical Testing of the Impact of Foreign Trade Intensity on Green Economic Efficiency in the Jiangsu, Zhejiang, and Shanghai Regions

(1) Variable Selection and Data Sources

This study employs a common method, which is to use trade dependence to measure the degree of foreign trade of various provinces. Trade dependence reflects the close relationship between economic growth and foreign trade in a specific region. It can not only be used to evaluate the contribution of foreign trade to the economic growth of that region but also to indicate the relative position of that region in foreign trade. The formula for calculating this indicator is as follows:

\[
\text{TRADE}_{it} = \left[\frac{(EX_{it} + IM_{it})}{GDP_{it}} \right] \times 100\%
\]

In the formula, \(\text{TRADE}_{it} \) measures the foreign trade dependence of province \(i \) at time \(t \), \(IM_{it} \) and \(EX_{it} \) represent the import and export values of province \(i \) at time \(t \), and \(GDP_{it} \) represents the regional gross domestic product of region \(i \) in year \(t \). Data is sourced from the statistical yearbooks of the Jiangsu, Zhejiang, and Shanghai regions and has been converted to a consistent unit of measurement for the calculation of foreign trade dependence.
(2) Panel unit root test
Performing panel unit root tests using EViews 10.0 software, the results are as shown in Table 2.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Methods</th>
<th>Stationarity</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEE</td>
<td>ADF-Fisher Test</td>
<td>Unstationarity</td>
</tr>
<tr>
<td></td>
<td>PP-Fisher Test</td>
<td></td>
</tr>
<tr>
<td>D(GEE)</td>
<td>2.18489</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.16465</td>
<td></td>
</tr>
<tr>
<td>Trade</td>
<td>16.9007***</td>
<td>Stationarity</td>
</tr>
<tr>
<td></td>
<td>16.3018**</td>
<td></td>
</tr>
<tr>
<td>D(Trade)</td>
<td>16.9891***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>17.6377***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>15.2135**</td>
<td></td>
</tr>
<tr>
<td></td>
<td>17.7113***</td>
<td></td>
</tr>
</tbody>
</table>

Note: The values in parentheses are p-values, and *** (1%), ** (5%), and * (10%) represent the significance levels at which the null hypothesis of the presence of a unit root is rejected.

In Table 2, GEE and Trade represent Green Economic Efficiency and Trade Dependency, while D(GEE) and D(Trade) represent the first-order differences of Green Economic Efficiency and Trade Dependency. According to the test results, the original data of Green Economic Efficiency cannot reject the null hypothesis of non-stationarity under both testing methods; thus, the data is non-stationary. However, Trade Dependency rejects the null hypothesis at a 5% significance level under both testing methods, indicating that the data is stationary. After taking the first-order differences of both variables, Green Economic Efficiency and Trade Dependency reject the null hypothesis at a 5% significance level under all testing methods, confirming that the data is stationary.

(3) Cointegration Test
The unit root tests have shown that the variables in this study are all integrated of the same order. Next, we conduct a cointegration test using the Kao test, where the null hypothesis is the absence of cointegration. According to Table 3, the p-value of the Kao test is less than 0.05, rejecting the null hypothesis and indicating the presence of cointegration.

<table>
<thead>
<tr>
<th>Methods</th>
<th>Statistic</th>
<th>P Score</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kao Test</td>
<td>-2.1179**</td>
<td>0.0171</td>
<td>Existential cointegration</td>
</tr>
</tbody>
</table>

Note: The values in parentheses are p-values, and *** (1%), ** (5%), and * (10%) represent the significance levels at which the null hypothesis of the presence of a unit root is rejected.

(4) Panel error correction model
Panel error correction model (PECM) not only serving as a crucial representation of panel cointegration relationships, but also effectively capturing the short-term dynamic characteristics among variables, while overcoming the problem of spurious regression (Chen Haiyan, 2010). By establishing an Error Correction Model (ECM) to handle variables with cointegration, it is possible to reveal both the long-term equilibrium relationships and short-term dynamic relationships among these variables. Let their long-term relationship be:

\[GEE_{it} = \alpha_1i_t + \alpha_2i_t \text{TRADE}_{it} + \mu_t + \epsilon_{it} \]

The corresponding formula below is the corresponding distributed lag auto regressive model ARDL(1, 1, 1), whose form is as follows:

\[GEE_{it} = \sigma_{0i}GEE_{it-1} + \beta_{1i} \text{TRADE}_{it} + \beta_{2i} \text{TRADE}_{i,t-1} + \mu_t + \epsilon_{it} \]

Among them, \(GEE_{it} \), \(\text{TRADE}_{it} \) It represents the current period of green economy efficiency (GEE) and foreign trade degree (Trade) respectively. \(GEE_{it-1}, \text{TRADE}_{i,t-1} \) They represent the first phase lag of green economy efficiency (GEE) and foreign trade degree (Trade) respectively. Therefore, the following error correction model is established:

\[\Delta GEE_{it} = \Phi_1(GEE_{it} - \alpha_1i_t \text{TRADE}_{it}) + \theta_i\Delta \text{TRADE}_{it} + \mu_t + \epsilon_{it} \]
In the model, α_{1i} represents the long-term relationship between Profit_{it} and GEE_{it}, Φ_i represents the error correction speed, and θ_i represents the short-term relationship. If $\Phi_i < 0$, an error correction mechanism exists; $\Phi_i = 0$, indicates that the long-term relationship does not exist. Regression is carried out on the above formula, and the empirical result is the estimated value of each parameter. $\alpha_{1i}, \Phi_i, \theta_i$ describe the long-term and short-term relationship between the degree of foreign trade and the efficiency of green economy.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Region</th>
</tr>
</thead>
<tbody>
<tr>
<td>long-term relationship</td>
<td>Trade</td>
</tr>
<tr>
<td></td>
<td>c</td>
</tr>
<tr>
<td>short-term relationship</td>
<td>ΔTrade</td>
</tr>
<tr>
<td></td>
<td>c</td>
</tr>
<tr>
<td></td>
<td>ECM(-1)</td>
</tr>
</tbody>
</table>

Note: ECM represents the error correction term, and c is the constant term. Values in parentheses are p-values, with *** (three stars), ** (two stars), and * (one star) representing rejection of the null hypothesis of no unit root at 1%, 5%, and 10% significance levels, respectively.

By analyzing the regression results, we can further explore the relationship between the growth of green economic efficiency and the degree of foreign trade in the Yangtze River Delta region. The regression results indicate that the p-values for the degree of foreign trade are less than 0.1 in both long-term and short-term regressions, rejecting the null hypothesis, and the coefficients are positive. This suggests that an increase in the degree of foreign trade can promote the growth of green economic efficiency in both the long term and short term. The error correction term coefficient is -1.036, indicating that when short-term fluctuations deviate from the long-term equilibrium, there is an adjustment force of -1.036 to bring the non-equilibrium state back to equilibrium. In the short term, an increase in foreign trade can stimulate economic activity, thereby promoting the development of new environmental protection technologies and investments. With increased foreign trade, businesses face a broader market and more opportunities, making them more attentive to environmental protection and sustainable development. To meet the international market's demand for eco-friendly products and services, companies will intensify their research and application of green technology, improve resource utilization efficiency, and reduce environmental pollution. This short-term environmental stimulus helps drive the growth of green economic efficiency. Furthermore, in the long term, an increase in foreign trade also contributes to the sustainability of the green economy. With the expansion of foreign trade, the Yangtze River Delta region will pay more attention to long-term planning and sustainable development. Both the government and businesses will focus on the rational use of resources and environmental protection to ensure the long-term development of the green economy. This emphasis on long-term planning and sustainable development will lead to greater achievements in the field of green economics in the Yangtze River Delta region and lay a solid foundation for future sustainable development.

4. Conclusion and Suggestion

As China undergoes a transformation and upgrade in its foreign trade structure, and deepens its engagement in foreign trade, the country has already achieved significant accomplishments in the field of green trade. The increase in the number of green patents and the improvement in green economic efficiency also underscore China's enormous potential in green trade. However, in order to realize more stable and sustainable economic growth and to make a greater contribution to global trade and environmental conservation, China needs to further strengthen trade balance between its eastern and western regions and increase the proportion of green trade in its foreign trade. In this section, we propose the following recommendations at the national, corporate, and consumer levels.
4.1. National level

The government plays a guiding, supportive, and coordinating role in promoting green trade. Firstly, the country should continue to encourage green trade by advocating for companies to promote the development of green industries and foreign trade through means such as reducing emissions of pollutants and recycling resources. Secondly, there should be active efforts to attract domestic and foreign investors to participate in investments in the green economy, thus stimulating the development of the green industry chain and international trade growth. In addition, efforts should be made to strengthen the construction of environmental standards and certification systems for green products and services, enhancing the market competitiveness of green products and promoting the development of international trade. Finally, active engagement in international green economic cooperation and multilateral mechanisms should be pursued to share experiences, technologies, and resources with other countries and regions, collectively advancing the development of the green economy and the greening of international trade.

4.2. Enterprise Level

As an important part of economic and social development, enterprises bear the main responsibility and obligation in ecological construction. In order to better implement the policy of "green mountains are golden mountains" and achieve sustainable development, in addition to the above four points, enterprises should also pay attention to these aspects: in the process of production and operation, enterprises should actively prevent the discharge of pollutants by optimizing the production process, strengthening waste treatment and other measures to reduce environmental pollution; Move beyond the traditional idea of profit as the sole goal. Companies should adhere to moral responsibility and put moral responsibility and profit growth on the same level. Enterprises should actively fulfill their environmental protection responsibilities not only to meet the legal requirements, but also out of the sense of responsibility for the social environment; Enterprises should actively promote the development of green wisdom and improve environmental friendliness through technological innovation. Companies can use technologies such as artificial intelligence to optimize production processes, reduce energy consumption and waste emissions, and achieve green development; The ecological construction of the enterprise itself should be integrated with the ecological construction of the city, and it is committed to making the enterprise a benchmark for urban green construction, improving the ecological environment quality of the city with its own strength, and achieving the integration of industry and city.

4.3. Consumer Level

In order to promote the development of green trade, consumers first need to raise consumer awareness and proactively understand the environmental properties of products and production processes to make more informed purchasing decisions. Second, consumers should focus their purchases on environmentally friendly products and services, make environmentally friendly choices, and encourage sustainable consumption behavior from the demand side. By choosing environmentally friendly products and services, consumers can push companies to invest more in environmentally friendly technologies and innovation, driving the development of a green economy. In addition, consumers should also support local products, which will help reduce transportation and carbon emissions, promote local economic growth, and make a greater contribution to China's trade and environmental protection.

References

