Olympic Games Site Selection Based on EWM-TOPSIS

Zeqi Zhao*, Shiding Mou, Jinfan Bai
Mathematics and Statistical Institute, Shandong University, Weihai, Shandong, 264209
*Corresponding author: 202100820223@mail.sdu.edu.cn

Abstract. Due to the high cost and lack of benefits of reporting the Olympic Games, the incentive for countries to host the Games has declined significantly in recent years, and the number of countries applying to host the Games has decreased. This paper attempts a new option for hosting the Olympic Games - a fixed venue location. In order to identify a permanent venue for the summer and winter seasons respectively, this paper selects the most suitable option from countries that have hosted either the summer or winter Olympic Games. The EWM-TOPSIS model was used to calculate the scores of each venue, and the best venue for the Summer Olympics was calculated to be London, and the best venue for permanent Winter Olympics was Lake Placid, USA.

Keywords: Olympic, Site selection, EWM-TOPSIS.

1. Introduction

The IOC is encountering a decline in the quantity of proposals to hold the Olympics, encompassing both the Summer and Winter Games. The Olympic Logo is shown in Figure 1.

![Figure 1. Olympic Logo](image)

Previously, hosting the Olympics was viewed as a highly sought-after and esteemed opportunity. However, in more recent times, cities and countries that have hosted the Olympics have faced a range of negative impacts that affect both the short and long term. To combat these problems, creative thinkers are exploring a variety of options and strategies. One idea is to consider having a permanent location for both the Summer and Winter Games.

Research has shown that sustainability is an important factor in addressing the issues facing the Olympic Games. In his systematic review, Hong (2018) found that sustainability has become one of the themes of the Olympic Games, including environmental, social, and economic aspects. The authors also suggest that governments, organizations, and other stakeholders should pay more attention to sustainability during the bidding and hosting process of the Olympic Games [1].

However, sustainability is not the only solution to all problems. Chalkley and Essex (2019) point out that the problem of the declining number of cities/countries bidding to host the Olympic Games may be due to a variety of factors such as economic costs, political risks, and public backlash. The authors suggest that the IOC should be more proactive in working with cities/countries to help them cope with these issues and provide better support and resources [2]. Vincent (2019) also points out that previous Olympic Games have had serious budget overruns, and that the expansion of the scope of the project due to unforeseen events is one of the key reasons, while the sustainable use of previous Olympic sites has been effective in reducing costs [3].
In addition, Xu Lei (2020) studied the cost and risk of the Olympic Games and pointed out that the construction of Olympic venues will bring about problems of venue construction cost, organizational cost risk and public health and safety \cite{4}. The authors suggest that the Olympic movement should focus more on reusing venues and infrastructure to reduce unnecessary construction costs. Similarly, Brownell (2016) argues that the Olympic Movement needs to revisit the way it operates and come up with innovative and sustainable solutions \cite{5}.

In conclusion, solving the problems faced in hosting the Olympic Games requires a combination of factors. Sustainability, cooperation and innovation are important aspects of the solution. Reducing the size, decentralizing the Olympic movement and using modern technology may be viable solutions to reduce the burden on cities and countries. In the future, the IOC will need to work together with cities and countries to find the best solutions to achieve sustainability and shared prosperity.

To determine the permanent location for the summer and winter seasons respectively, our approach to solving all the tasks is as Figure 2.

![Figure 2. Full flow chart of this article](image)

In this paper, we take the countries that have hosted the Winter Olympics and Summer Olympics as candidates for the permanent sites of the Winter Olympics and Summer Olympics, and on this basis we can consider indicators such as economy, land use, human satisfaction (athletes and spectators), travel, future improvement opportunities, and prestige of the host city/country as the criterion layer of the evaluation model, and from these indicators then From these indicators, several secondary indicators (indicator layers) were subdivided to construct the Olympic site selection evaluation system. We then used the EWM-TOPSIS model to assign the corresponding weights to each indicator according to each indicator \cite{6}, and solved for the scores of each candidate country to arrive at the country with the highest score as the most suitable country to be the permanent Olympic site.

2. Options for the Permanent Site of the Winter and Summer Olympic Games

When considering hosting the Olympic Games, a host city or country faces a variety of considerations and challenges. To support ICMG’s work, we propose to use the EWM-TOPSIS model to develop a system of evaluation indicators and to assess each potential host city or country.

Our indicator system consists of five primary indicators: economic level, human satisfaction, tourism, host country prestige level, and opportunities for future improvement, with several secondary indicators under each primary indicator. For example, under the human satisfaction level, we consider two secondary indicators: the number of athletes participating and the audience opinion index.

We chose the EWM-TOPSIS model because of its ability to rank and rank effectively when dealing with multi-indicator decision problems with weights. The model uses a weighted Euclidean distance and a weighted Manhattan distance to calculate each city’s score and compare it with other cities to determine the optimal host city. In doing so, we consider the direction of each indicator, e.g., country GDP total is a positive indicator and audience opinion index is a negative indicator.

By using the EWM-TOPSIS model, we are able to provide a comprehensive and objective assessment that will help ICMG make informed decisions in the selection and decision to host the Olympic Games. At the same time, our indicator system provides a useful framework for ICMG to use in the selection of future Olympic Games host cities.
2.1. Construction of Olympic Site Selection Evaluation System

BP neural network is back propagating, mainly composed of three parts: input layer, middle layer and output layer. The number of nodes in the input and output layers is relatively easy to determine, but the determination of the number of nodes in the hidden layer is a very important and complex problem.

The relationship between input and benefit should be fully considered for the selection of permanent sites for the Summer and Winter Olympic Games. On the premise of the target layer: "Selecting the permanent Olympic site", we selected five first-level indicators, i.e. the criterion layer:

- Selecting the permanent Olympic site, we selected five first-level indicators, i.e. the criterion layer:
 - economic level of the country where the site is located
 - Country GDP total
 - Hosting the Olympic Games requires a lot of money to build stadiums, facilities, infrastructure, etc. Therefore, the level of economy is crucial to hosting the Games. The higher the economic level of a country, the more qualified it is to be the permanent site of the Olympic Games.
 - satisfaction of spectators or local residents
 - Number of athletes participating
 - A successful organizer can be reflected in many aspects, among which it has a certain relationship with the number of athletes’ participation. The holding of the Olympic Games requires large-scale organization, coordination and execution, and the number of athletes’ participation can reflect the organizer’s organizational ability to a certain extent. In addition, the Olympic Games need a large number of venues and facilities to hold various competitions. If the venue facilities are insufficient or of poor quality, it will affect the competition and the experience of the participants. Among other things, the Olympic Games need to do a good job of security, including protecting the safety of participants and spectators, preventing terrorist attacks and other security incidents. As a global sporting event, the Olympic Games are often affected by the international political situation. If political factors interfere with the normal conduct of the Olympic Games, it will also affect the success of the Games. And the number of athletes participating is able to side-by-side reflect whether the organizers do a good job in these aspects to do a comprehensive.
 - Viewer opinion index
 - In addition to the number of athletes participating, the "audience opinion index" is also one of the indicators that can reflect the "satisfaction of the audience or local residents", which reflects the level of interest in the current Olympic Games, the financial investment of the organizer in the current Olympic Games: advertising, financial investment, etc., which can reflect the level of importance of the organizer to the Olympic Games.
 - travel
 - Number of travelers
 - The number of tourists can reflect the popularity and image of the city and country hosting the Olympics. If the city or country hosting the Olympics itself has a high popularity and image, it may attract more tourists to come to watch and visit the games. On the contrary, if the image is poor or there are problems such as security, it may have a negative impact on tourism. Timing and location of the Olympic Games: If the timing and location of the Olympic Games match the peak season of local tourism and popular destinations, it may attract more tourists to visit. Conversely, if the timing and location of the Olympic Games do not match the local tourism industry, it may have a negative impact on tourism.
 - host country’s prestige level
 - Prestige index
 - The prestige level of the host country we can quantify from many aspects, here we choose whether the host country is currently a developed country as our main factor to quantify the prestige level of the host country, we take the factor named prestige index, whether a country is a developed country can be seen, whether the country’s policies are solid, whether the security is stable, and its laying down the level of a country’s comprehensive strength.
• Host city host times

The number of times a country has successfully applied for the Olympic Games may reflect the strength and influence of that country in the field of the Olympic Movement. Generally speaking, the stronger and more influential a country is in the field of Olympic sports, the higher the success rate of its application to host the Olympic Games. In addition, the successful hosting of the Olympic Games has a great impact on a country, which can not only enhance the country’s popularity and image in the world, but also promote the development of local economy, culture, society and other aspects. Let the ith primary index be \(U_i \) \((i=1..4)\), and the characteristics obtained in section 4.1 as the influencing factors of the primary index are the secondary indexes, and let the jth secondary index under the ith primary index be \(U_{ij} \) \((i=1..4,j=1..3)\) to construct the Olympic site selection evaluation index system as the following table 1:

<table>
<thead>
<tr>
<th>Number</th>
<th>Primary indicator</th>
<th>Number</th>
<th>Secondary indicator</th>
<th>Direction</th>
</tr>
</thead>
<tbody>
<tr>
<td>U₁</td>
<td>Economic level</td>
<td>U₁₁</td>
<td>Total national GDP</td>
<td>positive</td>
</tr>
<tr>
<td>U₂</td>
<td>Human satisfaction</td>
<td>U₂₁</td>
<td>Number of athletes</td>
<td>positive</td>
</tr>
<tr>
<td>U₃</td>
<td>Tourism</td>
<td>U₃₁</td>
<td>Number of visitors</td>
<td>negative</td>
</tr>
<tr>
<td>U₄</td>
<td>Host country’s prestige level</td>
<td>U₄₁</td>
<td>Prestige index</td>
<td>positive</td>
</tr>
<tr>
<td>U₅</td>
<td>Chances for future improvement</td>
<td>U₅₁</td>
<td>Number of times held</td>
<td>positive</td>
</tr>
</tbody>
</table>

2.2. EWM-TOPSIS Model based on the Selection of the Permanent Olympic Site

2.2.1 Data Preprocessing

Before modeling, the index data need to be normalized and standardized, we use min-max normalization method to transform the original series \(x₁, x₂, \ldots, xₙ \).

\[
y_i = \frac{x_i - \min_{1 \leq j \leq n} x_j}{\max_{1 \leq j \leq n} x_j - \min_{1 \leq j \leq n} x_j}
\]

(1)

Then the new sequences \(y_1, y_2, \ldots, y_n \in [0,1] \) and are dimensionless.

The data are preprocessed as shown in Figure 3 below.

Figure 3. Standardized data display for London related indicators
2.2.2 EWM-TOPSIS Model Building

1. Construct the original data matrix \[L = \begin{pmatrix} r_{11} & r_{12} & \cdots & r_{16} \\ r_{21} & r_{22} & \cdots & r_{26} \\ r_{31} & r_{32} & \cdots & r_{36} \end{pmatrix} \] (2)

2. Calculation of index value weights:

\[
\begin{align*}
P_{ij} &= \frac{r_{ij}}{\sum_{i=1}^{m} r_{ij}} \\
E_j &= \frac{\sum_{i=1}^{m} P_i \ l_0 \ 1_{p}}{\sum_{i=1}^{m} (1 - E_j)} \\
W_j &= 1 - E_j
\end{align*}
\] (3)

Where: \(P_{ij} \) is the characteristic weight or contribution of the \(i \)th system under the \(j \)th indicator; \(E_j \) is the entropy value of the \(j \)th indicator; \(W_j \) is the entropy weight of the \(j \)th indicator.

3. Constructing a weighted normalized decision array \(V \):

\[
V = W_j r'_{ij} = \begin{pmatrix} w_1 r_{11} & w_2 r_{12} & \cdots & w_n r_{1n} \\ w_1 r_{21} & w_2 r_{22} & \cdots & w_n r_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ w_1 r_{m1} & w_2 r_{m2} & \cdots & w_n r_{mn} \end{pmatrix}_{m \times n}
\] (4)

4. Calculate the relative proximity of each alternative \([8] \)

Firstly, determine the positive and negative ideal solutions under each index, and then calculate the relative proximity \(D_i \) of each option relative to the ideal point, the larger \(D_i \), the better the comprehensive benefit of the evaluation object; conversely, the smaller, the worse the comprehensive benefit of the evaluation object.

2.3. Solution of EWM-TOPSIS Model

2.3.1 Selection of Countries Involved in Scoring

<table>
<thead>
<tr>
<th>Table 2. Hosts of previous Summer Olympics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summer Olympic Sessions</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>......</td>
</tr>
<tr>
<td>31</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 3. Previous Winter Olympics organizers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Winter Olympics Sessions</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>......</td>
</tr>
<tr>
<td>23</td>
</tr>
</tbody>
</table>

In order to reduce the difficulty of the question and narrow down the list of candidate countries, we selected the countries that hosted the previous Summer Olympic Games and the previous Winter
Olympic Games, as in Table 2 and Table 3, as candidates for the permanent location of the two Games. The data are mainly from the first to the recent 2018 period. The selection of countries that have hosted the Summer.

Olympic Games and the Winter Olympic Games is a logical operation. These countries generally have a high level of experience in hosting the Olympic Games and the level of hosting, and are more equipped with the conditions and strength to host the Olympic Games compared to other countries. There are 31 Summer Olympic Games with 21 countries and 23 Winter Olympic Games with 13 countries.

2.3.2 Index Weights and Site Selection Scores

In this scheme, we divide the Olympic Games into Summer and Winter Games, and get the information entropy and information utility values of the six secondary indicators for Summer and Winter respectively by the entropy weighting method through Matlab software programming, and finally get the indicator weights as Figure 4:

![Summer Olympic Weight Map](image)

(a) Summer Olympic Weight Map

![Winter Olympics Weight Map](image)

(b) Winter Olympics Weight Map

Table 4. Summer/Winter Olympic Nightingale rose weight graph

<table>
<thead>
<tr>
<th>Country</th>
<th>London, UK</th>
<th>Los Angeles, USA</th>
<th>Paris, France</th>
</tr>
</thead>
<tbody>
<tr>
<td>Combined Score</td>
<td>0.712</td>
<td>0.583</td>
<td>0.44</td>
</tr>
<tr>
<td>Sort</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

Analyzing the chart of the Summer Olympics, we can get the following information: through the entropy weighting method we solved to get the weight of each secondary index, and it is known that the host city has the highest weight of 56%, followed by the total GDP of the country which reaches 25%, under this group of weights, we can calculate the "permanent location suitability" of each host country of the Summer Olympics through EWM-TOPSIS We were able to calculate the "permanent location suitability" score for each country hosting the Summer Olympics through EWM-TOPSIS. According to Table 4, the rating of the London region of the United Kingdom reached 0.712 ranking first, followed by Los Angeles of the United States, whose rating reached 0.583, and finally Paris of France, whose rating was 0.44. It can be seen that London of the United Kingdom as the host city of the Summer Olympics has some advantages: 1. Long history of the Olympics: Britain is one of the birthplaces of the Olympic movement and has successfully held the Olympic Games and other The UK is one of the birthplaces of the Olympic movement and has successfully hosted the Olympic Games and other major sports events many times. These experiences and histories can provide valuable reference and guidance for Britain to host the Summer Olympics. 2. Strong economic strength: As one of the most developed economies in the world, Britain has strong economic strength and can afford the cost of hosting the Olympic Games. At the same time, London is also a world-renowned business and financial center, which can provide strong support for the sponsorship and fundraising of the Olympic Games.
Table 5. Winter Olympics host country composite score

<table>
<thead>
<tr>
<th>Country</th>
<th>Lake Placid, USA</th>
<th>Innsbruck, Austria</th>
<th>St. Moritz, Switzerland</th>
</tr>
</thead>
<tbody>
<tr>
<td>Combined score</td>
<td>0.693</td>
<td>0.576</td>
<td>0.544</td>
</tr>
<tr>
<td>Sort</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

Analyzing the graph of the Winter Olympics, we can get the following information: By the entropy weighting method, we solve for the weight of each secondary index, and it is known that the highest weight of the host city is 51%, followed by the total GDP of the country is 20%. Unlike the Summer Olympics, where the number of visitors is also a key weighting, the EWM-TOPSIS calculates the "permanent location suitability" score for each host country of the Winter Olympics[^10]. According to Table 5 Lake Placid, USA topped the list with a rating of 0.693, Innsbruck, Austria ranked second with a rating of 0.576, followed by St. Moritz, Switzerland with a rating of 0.544. It can be seen that the Winter Olympics pay more attention to the popularity and image of the city and country than the Summer Olympics, and it also reflects the strong strength of the United States as the number one economy.

2.4. General Analysis of the Permanent Olympic Site Proposal

In conclusion, the entropy weighting method and the EWM-TOPSIS algorithm have been used to analyze and calculate the weighting of the secondary indicators for the Summer and Winter Olympics, and both London, UK and Lake Placid, USA ranked first in the "suitability of permanent location", indicating that their advantages as host cities for the Olympic Games have been fully reflected. London, England, with its long history of Olympic Games and strong economy, and Lake Placid, USA, with its advantages in terms of visibility and image of the Winter Olympics, are the key factors for their top ratings.

3. Conclusions

In recent years, most countries and cities have suffered certain negative effects, and the motivation to host the Olympic Games has dropped significantly, and the number of countries declaring the Olympics has decreased. This paper gives two options for holding the Olympic Games as a way to help the ICMG committee solve the Olympic Games site selection problem.

For determining the permanent site for the Olympic Games, considering that the permanent site requires a certain level of prestige and economic support from the country, our team decided to start with countries that have hosted the Summer and Winter Olympic Games, because these countries tend to have a better Olympic atmosphere and the old sites of Olympic stadiums can help ease the burden of the host country. In order to select the most suitable permanent site from the former host countries, our team considered a number of indicators to describe the success of previous Olympic Games, such as economic level, human satisfaction, the level of prestige of the host country or city, etc., and subdivided the secondary indicators on the basis of the primary indicators, thus establishing the Olympic Site Evaluation System, which was adopted by the EWM-TOPSIS model to rate each host, and the most suitable permanent site for the Summer Olympics is London, UK, while the most suitable permanent site for the Winter Olympics is Lake Placid, USA, by Matlab software solution.

References

