Machine manufacturing process improvement and optimisation

Yaoyao Wang1,2,3, Suchang Ma1,3,*, Jun Wang1, Haifeng Wang3, Wenying Pu3

1 School of Mechanical Technology, Wuxi Institute of Technology, Wuxi, China
2 Wuxi College of Mechanical and Electrical Engineering, Jiangsu University, Wuxi, China
3 Jiangsu Province Intelligent Production Line Technology and Equipment Engineering Research Centre, Wuxi, China

* Corresponding Author Email: masuchang@126.com

Abstract. The improvement and optimisation of machine manufacturing processes is crucial to the development of modern manufacturing. By improving processes, introducing advanced technologies and increasing production efficiency, companies can achieve lower production costs, higher quality products and shorter production times. This issue of the journal focuses on practical experience and technological exploration of process improvement and optimisation in machine manufacturing, with the aim of providing readers with the latest research and developments in this field. This article explores the application of automation technology, artificial intelligence and machine learning, data analytics and big data, and 3D printing technology in machine manufacturing process improvement. Through case studies, we will showcase some successful examples of machine manufacturing process improvement across different industries and company sizes. At the same time, we will explore the challenges of machine manufacturing process improvement and propose solutions. Finally, we will look at future trends and developments in machine manufacturing process improvement to provide readers with an in-depth understanding of the field.

Keywords: machine manufacturing processes, improvement, optimisation, productivity, production costs.

1. Introduction

With the rapid development of technology and increased market competition, the improvement and optimisation of machine manufacturing processes is becoming increasingly important. Manufacturing companies need to continuously improve production efficiency and reduce production costs, while also ensuring improved product quality and shorter production cycles. This requires companies to continuously explore and apply advanced process technologies in order to achieve a high degree of automation and intelligence in the production process. This publication will focus on the application of advanced technologies in the improvement of machine manufacturing processes. Technologies such as automation technology, artificial intelligence and machine learning, data analytics and big data as well as 3D printing technology will be explored in depth, demonstrating their enormous potential for optimising processes and improving production efficiency and product quality [1].

2. The importance of machine manufacturing processes

Improving production efficiency: Through process improvement, companies can optimise production processes, eliminate production bottlenecks and inefficient links and achieve increased production efficiency. Optimised processes can reduce unnecessary waiting times, transport times and equipment downtime, resulting in faster production of products and increased capacity.

Reducing production costs: An optimised process can reduce waste of raw materials, energy consumption and manpower input, thus reducing production costs. Through the rational choice of
process solutions and equipment configuration, companies can achieve cost control and reduction and increase profit margins.

Improving product quality: Improvements in machine manufacturing processes can effectively improve the quality and consistency of products. By optimising process parameters and introducing automated control and quality monitoring tools, the influence of human factors on product quality can be reduced and the reliability, stability and performance of products can be improved.

Shorter production cycles: Process improvements can shorten the production cycle of products, enabling companies to respond more quickly to market demands and changes. By optimising production processes, streamlining process steps and improving equipment utilisation, companies are able to quickly adjust production capacity and production schedules, increasing flexibility and responsiveness.

Enabling customised production: through process improvements, companies can achieve customised production to meet the individual needs of different customers. Advanced process technology and equipment make the production process more flexible and adaptable, enabling rapid adaptation to different product specifications and batch sizes.

3. Overview of process improvements

Assessing existing processes: Firstly, companies need to carry out a comprehensive assessment and analysis of their existing processes. This includes a comprehensive assessment of the operational processes, equipment utilisation, material and energy consumption for each process step. By understanding the problems and bottlenecks of the current manufacturing process, the basis for process improvement is laid.

Setting improvement targets: Based on the assessment, companies need to set clear improvement targets. These objectives should be aligned with the company's strategy and market needs, and include aspects such as productivity improvements, production cost reductions and product quality improvements.

Finding improvement solutions: Depending on the goals set, companies can look for suitable process improvement solutions. This may involve introducing advanced equipment and technology, optimising process parameters, improving operational processes, etc. Companies can explore improvement options that are suitable for their situation by studying and learning from best practices in the industry.

Implementing an improvement plan: Once an improvement plan has been identified, the business needs to develop a detailed improvement plan and ensure that it is implemented successfully. This includes areas such as resource deployment, staff training and technical support. At the same time, companies should also develop monitoring and evaluation mechanisms to ensure the effectiveness and sustainability of improvement measures.

Continuous improvement and optimisation: Process improvement is a continuous process. Companies should develop a culture and mechanisms for continuous improvement and encourage employees to suggest and implement improvements. By continuously optimising processes and introducing new technologies, companies can maintain a competitive advantage and adapt to changes in the market.

4. Key factors for optimising machine manufacturing processes

Equipment and technology: Choosing the right equipment and advanced technology is the key to optimising machine manufacturing processes [2]. Many advanced equipment and technologies have emerged in modern manufacturing, such as automated equipment, robotics and digital control systems, which can improve production efficiency, precision and reliability. Companies need to assess their needs and select the right equipment and technology to closely integrate them with their processes to achieve the best process results.
Process flow optimisation: Process flow is at the heart of machine building and optimising it can improve productivity and reduce costs. Companies can optimise their processes by simplifying them, reducing non-value adding activities and rationalising processes and working hours. At the same time, the rational setting and optimisation of process parameters is also key. By adjusting parameters such as processing speed, temperature and pressure, product quality and production efficiency can be improved.

Quality control and risk management: Optimising machine manufacturing processes must focus on quality control and risk management. Quality control includes quality monitoring and inspection from the procurement of raw materials to the production process to ensure that the product meets quality standards [3]. Risk management includes the identification, assessment and development of countermeasures for potential risks in order to reduce errors and failures in production and to ensure continuity and reliability of production.

Employee training and involvement: Employees are important participants in the optimisation of machine building processes. Companies should focus on employee training and skills upgrading to equip them with the ability to adapt to advanced technologies and new processes. Employee involvement and feedback is also key to optimisation. They may identify opportunities and problems for improvement in their daily operations, so companies should encourage employees to suggest improvements and incorporate them into the optimisation process.

5. Application of advanced technology in machine manufacturing process improvement

Automation technology: Automation technologies include automated control systems, sensors, actuators and robotics. They enable the automation and intelligence of production processes and improve production efficiency and quality. For example, automated control systems enable precise control and optimisation of process parameters and robotics can perform heavy, repetitive and high-risk operations, increasing productivity and safety.

Artificial intelligence and machine learning: Artificial intelligence and machine learning technologies enable the optimisation and prediction of production processes through the analysis and learning of large amounts of data. For example, by building intelligent models and algorithms, fault prediction and preventive maintenance can be achieved, increasing equipment availability and productivity [4]. In addition, artificial intelligence can be applied to the optimisation and adjustment of process parameters to achieve optimal production results.

Data analysis and big data: Big data technology allows the collection and analysis of large amounts of data generated during production, helping companies to identify potential optimisation opportunities and problems. Through data analysis, bottlenecks and anomalies in production can be identified and process flows and parameters can be optimized [5]. In addition, big data technology can be applied to supply chain management and predicting market demand, helping companies to achieve fine-tuned production and timely adjustments.

3D printing technology: 3D printing technology has a wide range of applications in machine building processes. It enables rapid prototyping, customised production and part repair, significantly reducing product development and production cycles. With 3D printing technology, companies can respond flexibly to changes in market demand and achieve rapid response and individual production.

6. Conclusions

On the road to process improvement and optimisation in machine manufacturing, we are aware of its importance and potential benefits. By optimising processes, introducing advanced technology and equipment, and focusing on quality control and staff training, companies can achieve increased productivity, cost reductions, higher product quality and shorter production cycles. These improvements and optimisations will make companies more competitive and support their position.
in the market. However, the improvement of machine manufacturing processes is a continuous process. As technology continues to advance and the market changes, companies need to continue to learn and innovate, exploring new process options and the application of advanced technology. At the same time, it is vital to encourage the involvement of employees and the establishment of a culture of continuous improvement. Long-term competitive advantage and sustainable growth can only be achieved if improvement and optimisation are built into the DNA of the company.

Acknowledgments

The paper was supported by Wuxi Institute of Technology Doctoral Professor Scientific Research Startup Project (BT2019-01).

References