Innovations in Flexible Electronic Skin: Material, Structural and Applications

Shijiao Chen
James Watt School of Engineering, University of Glasgow, Glasgow, UK
2809659C@student.gla.ac.uk

Abstract. Flexible electronic skin (e-skin) has emerged as a promising technology for advanced sensing capabilities in applications such as robotics, prosthetics, and human-machine interfaces. The properties of e-skin devices hinge on the selection of appropriate materials and structures, such as sensitivity, mechanical flexibility, and biocompatibility. This article provides an overview of the current state of e-skin research, focusing on the materials and structures used to create e-skin devices. Various materials were discussed in this paper, including conductive polymers, carbon nanotubes, graphene, bacterial cellulose, metal-organic frameworks, ionogels, and self-healing materials, highlighting their unique properties and potential applications in e-skin designs. Additionally, the structures and architectures of e-skin devices were examined, covering aspects such as multilayer designs, hybrid structures, and hierarchical configurations. This comprehensive review offers valuable insights into the development and optimization of e-skin materials and structures, paving the way for the creation of innovative, high-performance e-skin devices for various applications.

Keywords: E-skin materials, Flexible electronic skin, Wearable electronics, Artificial intelligence.

1. Introduction

Electronic skin (e-skin) is an emerging field of research aims to develop artificial skin-like materials capable of mimicking the ability of human skin to sense and respond to various stimuli [1], [2]. The development of e-skin has the potential to revolutionize a wide range of applications, including wearable electronics, robotics, prosthetics, and human-machine interfaces [3–5]. In particular, flexible e-skin materials and structures have attracted significant interest due to their ability to conform to complex surfaces, withstand mechanical deformation, and provide a comfortable interface with the human body [6, 7].

As the demand for more sophisticated e-skin solutions increases, researchers have been exploring various materials and structures that can provide the necessary sensing capabilities while maintaining flexibility, durability, and biocompatibility [2, 5]. This has led to the development of e-skin based on conductive polymers, carbon nanotubes, graphene, and other novel materials [8–10]. Moreover, advances in artificial intelligence and machine learning have been integrated into e-skin designs to enhance their sensing capabilities and enable more advanced applications [11–13].

In this article, an objective and rigorous overview of the current state of flexible e-skin research is provided, focusing on the materials and structures that have been developed and their respective sensing capabilities. Meanwhile, the integration of artificial intelligence and machine learning in e-skin designs is also discussed, and potential future trends and applications in various industries are explored.

2. Historical evolution and design considerations of e-skin

The concept of electronic skin dates back to the early 2000s, with pioneering work by Wagner et al. [6], who introduced the idea of a flexible, skin-like material capable of sensing and responding to external stimuli. Over the past two decades, significant progress has been made in the development of e-skin materials, structures, and applications [2]. The evolution of e-skin has been characterized...
by the continuous improvement of sensing capabilities, mechanical flexibility, and biocompatibility, driven by the increasing demand for more advanced and versatile sensing solutions [2, 4].

2.1. Design considerations for e-skin materials and structures

The design of flexible e-skin materials and structures involves several critical factors that must be considered to ensure optimal performance in terms of sensing capabilities, mechanical properties, and biocompatibility [2, 4]. These factors include:

A. Sensitivity and response time: E-skin should be capable of detecting a wide range of stimuli, including pressure, temperature, and humidity, with high sensitivity and rapid response times [7, 13].

B. Flexibility and stretchability: E-skin materials and structures should be flexible and stretchable to conform to complex surfaces and accommodate mechanical deformations without compromising their sensing capabilities [6, 7].

C. Durability and reliability: E-skin should maintain its performance and structural integrity over time, even under repeated mechanical stress or exposure to environmental factors [5, 16].

D. Biocompatibility and biodegradability: E-skin materials should be compatible with biological systems and, preferably, be biodegradable to minimize the environmental impact and facilitate the disposal of e-skin devices [5].

E. Integration with electronics and data processing: E-skin designs should allow for seamless integration with electronic components and data processing systems, such as artificial intelligence and machine learning algorithms, to enable advanced sensing capabilities and applications [11–13].

By considering these factors, researchers have developed a diverse range of e-skin materials and structures that demonstrate promising performance in various applications, as discussed in the following sections.

3. Materials Used in Flexible E-skin

A variety of materials have been utilized in the development of flexible electronic skin, aiming to achieve diverse properties and sensing capabilities. This section presents an overview of some of the most prominent materials used in e-skin research, focusing on their unique properties and corresponding applications.

3.1. Conductive polymers

Conductive polymers, such as poly (3, 4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) and polyaniline (PANI), have been widely used in e-skin research due to their excellent electrical conductivity, mechanical flexibility, and biocompatibility [1, 2]. These materials enable the fabrication of stretchable and transparent e-skin sensors that can detect strain, temperature, and humidity [7]. Conductive polymers can be combined with other materials or used as the primary sensing component, providing various design opportunities for e-skin devices. The inherent flexibility and stretchability of conductive polymers allow for the development of sensors that can conform to complex geometries, making them well-suited for wearable and implantable applications. Furthermore, their biocompatibility enables the integration of conductive polymer-based e-skin sensors in biomedical devices, such as prosthetics and health monitoring systems.

3.2. Carbon nanotubes

Carbon nanotubes (CNTs) are a promising material for e-skin development due to their exceptional electrical conductivity, mechanical strength, and flexibility [3, 10]. By incorporating CNTs into flexible e-skin sensors, researchers have been able to enhance sensitivity and response times for various sensing applications. The one-dimensional nanostructure of CNTs allows for efficient charge transport and mechanical reinforcement, making them an ideal candidate for e-skin sensors that require high sensitivity and durability. In addition, the tunable electrical properties and high aspect ratio of CNTs enable the development of sensors with a wide range of sensing capabilities, including
strain, pressure, and temperature sensing. Recent advances in CNT synthesis and functionalization have further expanded their potential applications in e-skin research, paving the way for the development of multifunctional and high-performance sensors.

3.3. Graphene

Graphene, a single layer of carbon atoms arranged in a hexagonal lattice, offers remarkable electrical, thermal, and mechanical properties, making it an attractive material for e-skin applications [3, 8]. Graphene-based e-skin sensors demonstrate high sensitivity, fast response times, and excellent durability, allowing for advanced sensing capabilities in various applications. The two-dimensional nature of graphene enables efficient signal transduction and mechanical flexibility, making it well-suited for e-skin sensors that require high sensitivity and low mechanical interference. Furthermore, the tunable properties of graphene, such as its conductivity and transparency, can be exploited to design e-skin sensors with tailored performance and aesthetics. Ongoing research in graphene synthesis, functionalization, and integration with other materials continues to expand the potential applications of graphene-based e-skin sensors, providing new opportunities for innovation in the field.

3.4. Bacterial cellulose

Bacterial cellulose (BC) is a biocompatible, mechanically robust, and environmentally friendly material that has gained attention in e-skin research [9]. By utilizing BC as a substrate, researchers have developed e-skin sensors with enhanced flexibility and sustainability, making them suitable for a wide range of applications. The unique properties of BC, such as its high mechanical strength, tunable porosity, and excellent biocompatibility, enable the development of e-skin sensors that can withstand mechanical stress and conform to complex geometries. In addition, the natural origin of BC makes it an appealing choice for environmentally conscious e-skin designs, promoting sustainability in the rapidly growing field of e-skin research.

3.5. Metal-Organic Frameworks (MOFs)

Metal-Organic Frameworks (MOFs) are a class of porous materials composed of metal ions or clusters coordinated to organic ligands, offering exceptional structural tunability, high surface area, and versatile functionalization possibilities [12, 14]. The unique properties of MOFs make them promising candidates for use in e-skin sensors, where their tunable pore size, high conductivity, and flexible frameworks can contribute to enhanced sensitivity and performance. By incorporating MOFs into e-skin designs, researchers can develop sensors with tailored mechanical and electrical properties, enabling a wide range of sensing capabilities, such as pressure, strain, and temperature sensing. Additionally, the ability to control the pore size and functionality of MOFs allows for the development of highly selective and responsive e-skin sensors, paving the way for advanced applications in robotics, prosthetics, and wearable electronics.

3.6. Ionic liquids and ionogels

 Ionic liquids, which are salts that exist in a liquid state at room temperature, have emerged as an attractive material for e-skin applications due to their excellent ionic conductivity, non-volatility, and chemical stability [9]. When combined with polymer matrices, ionic liquids form ionogels, which exhibit the desirable properties of both hydrogels and ionic liquids, including mechanical flexibility, high sensitivity, and stability under various environmental conditions. The unique properties of ionogels enable the development of e-skin sensors that are not only mechanically robust and flexible but also exhibit improved stability and performance under high humidity or elevated temperature conditions. By incorporating ionogel-based structures into e-skin designs, researchers can develop advanced sensing solutions that are adaptable to a wide range of applications and environments.
3.7. Self-healing materials

Self-healing materials, which possess the ability to autonomously repair damage, have gained significant interest in e-skin research due to their potential for extending the lifetime and durability of e-skin sensors [2, 15]. These materials can be integrated into e-skin designs as protective layers or incorporated within the sensing components, allowing for the restoration of sensor functionality after damage. Common self-healing materials used in e-skin research include self-healing polymers, hydrogels, and elastomers, which can repair themselves through various mechanisms such as reversible covalent bonding, hydrogen bonding, or ionic interactions. By incorporating self-healing materials into e-skin designs, researchers can enhance the reliability and longevity of e-skin sensors, ensuring consistent performance in various applications, including robotics, prosthetics, and human-machine interfaces.

The ongoing exploration of novel materials for e-skin applications is essential for achieving improved performance, versatility, and durability in e-skin devices. By understanding the unique properties of various materials and leveraging their advantages in e-skin designs, researchers can continue to advance the field of e-skin technology, creating innovative solutions for sensing, robotics, and human-machine interfaces.

4. E-skin Structures and Architectures

The design and fabrication of flexible electronic skin structures and architectures play a critical role in determining the performance, durability, and overall functionality of e-skin devices. This section highlights some of the most prevalent e-skin structures and architectures, discussing their unique features and advantages.

4.1. Multilayer structures

Multilayer structures are a common design choice for e-skin sensors, as they enable the integration of different functional layers to achieve a variety of sensing capabilities and improve overall performance [2, 6]. These structures typically consist of a substrate, a sensing layer, and a protective layer, which work together to provide the desired mechanical, electrical, and environmental properties. By tailoring the composition, thickness, and arrangement of each layer, researchers can optimize the e-skin sensor for specific applications, such as strain sensing, temperature sensing, or humidity sensing. Moreover, multilayer structures allow for the incorporation of additional functional layers, such as energy harvesting or self-healing components, further expanding the capabilities of the e-skin device.

4.2. Fibrous membrane structures

Fibrous membrane structures offer enhanced mechanical stability and flexibility, making them suitable for wearable and implantable e-skin applications [15, 16]. These structures are typically fabricated using electrospinning techniques, which enable the production of nanofiber-based membranes with controlled fiber diameters, orientations, and porosities. The fibrous architecture allows for improved stretchability, breathability, and self-healing capabilities, as well as excellent moisture-wicking and antibacterial properties, ensuring both comfort and durability in long-term use. By combining fibrous membrane structures with various conductive materials, researchers can create e-skin sensors with tailored sensing properties and improved mechanical performance.

4.3. Nanomesh structures

Nanomesh structures provide a unique combination of high surface area, low mechanical impedance, and exceptional transparency, making them well-suited for e-skin applications where high sensitivity and low mechanical interference are desired [8]. Typically fabricated using lithography or self-assembly techniques, these structures consist of interconnected nanoscale elements that form a porous network, allowing for efficient signal transduction and enhanced sensitivity. Furthermore, the
inherent flexibility and transparency of nanomesh structures enable the fabrication of e-skin sensors with minimal impact on the user's perception and interaction with their environment. The integration of nanomesh structures with advanced materials, such as graphene, can further improve the performance and versatility of e-skin devices.

4.4. Ionogel-based structures

Ionogel-based structures offer a promising approach to e-skin design by combining the advantages of hydrogels and ionic liquids, resulting in sensors with excellent mechanical flexibility, high sensitivity, and stability under various environmental conditions [9]. Ionogels are composed of an ionic liquid encapsulated within a polymer matrix, allowing for efficient charge transport and signal transduction. The unique properties of ionogels enable the development of e-skin sensors that are not only mechanically robust and flexible but also exhibit improved stability and performance under high humidity or elevated temperature conditions. By incorporating ionogel-based structures into e-skin designs, researchers can develop advanced sensing solutions that are adaptable to a wide range of applications and environments.

The ongoing development of novel e-skin structures and architectures is essential for achieving improved performance, versatility, and durability in e-skin devices. By exploring various design approaches and leveraging the unique advantages of each structure, researchers can continue to advance the field of e-skin technology, paving the way for innovative applications in robotics, prosthetics, wearable electronics, and human-machine interfaces.

5. E-skin Sensing Capabilities

Flexible e-skin materials and structures have enabled the development of various sensing capabilities that can be tailored to specific applications. Some of the key sensing capabilities include:

A. Strain sensing

Strain sensing is an essential capability for e-skin, allowing it to detect mechanical deformations and changes in shape. Chen et al. [7] developed transparent and stretchable e-skin sensors capable of detecting strain with high sensitivity and reliability.

B. Temperature sensing

Temperature sensing is crucial for applications such as prosthetics and wearable devices, where monitoring temperature changes is necessary. E-skin sensors, such as those developed by Chen et al. [7] and Liu et al. [17], have demonstrated the ability to detect temperature changes with high accuracy and fast response times.

C. Humidity sensing

Humidity sensing is important for various applications, including healthcare and human comfort monitoring. E-skin sensors capable of detecting humidity changes, such as those reported by Chen et al. [7], enable real-time monitoring of environmental conditions.

D. Pressure sensing

Pressure sensing is vital for applications like robotics, prosthetics, and human-machine interfaces, where the ability to detect and respond to applied pressure is crucial. Wei et al. [13] and Hou et al. [18] developed e-skin sensors with pressure sensing capabilities that exhibit high sensitivity, accuracy, and fast response times.

E. Force sensing

Force sensing is important for applications requiring interaction with external objects or environments, such as robotics and prosthetics. Liu et al. [17] developed e-skin capable of detecting various forces with high accuracy and reliability.

F. Visible light sensing

Visible light sensing is valuable for applications involving light-responsive functionalities, such as adaptive camouflage or optoelectronic devices. Liu et al. [17] reported e-skin capable of sensing visible light, offering new possibilities for advanced applications.
By incorporating these sensing capabilities into flexible e-skin designs, researchers have been able to develop advanced solutions for various applications, including robotics, prosthetics, wearable electronics, and human-machine interfaces.

6. Integration of Artificial Intelligence in E-skin

The incorporation of artificial intelligence (AI) and machine learning (ML) algorithms into e-skin designs has opened new avenues for enhancing sensing capabilities and enabling more advanced applications. Some examples of AI and ML integration in e-skin research are:

A. Perception-to-cognition tactile sensing

Niu et al. [11] developed an AI-motivated human full-skin bionics electronic skin that enables perception-to-cognition tactile sensing. By integrating AI algorithms, the e-skin can process and interpret sensory data in a manner similar to human perception, resulting in more accurate and sophisticated sensing capabilities.

B. Neuro-inspired electronic skin

Liu et al. [14] proposed a neuro-inspired electronic skin for robots, where the e-skin is designed to mimic the structure and function of the human nervous system. This approach allows for more advanced sensing capabilities and improved adaptability in robotic applications.

C. Printed synaptic transistor-based e-skin

Liu et al. [12] developed a printed synaptic transistor-based electronic skin that enables robots to feel and learn from sensory input. By integrating ML algorithms into the e-skin design, the system can learn and adapt to new stimuli, offering enhanced performance and versatility.

D. Intelligent material perception systems

Wei et al. [13] presented an intelligent material perception system that incorporates ML algorithms into a pressure-sensitive e-skin. This integration allows the system to recognize and classify different materials, paving the way for advanced applications in robotics and human-machine interfaces.

The integration of AI and ML algorithms in e-skin designs has the potential to revolutionize the way e-skin devices sense, interpret, and respond to external stimuli. This advancement paves the way for more sophisticated applications and improved performance in various industries.

7. Applications of Flexible E-skin

The development of flexible e-skin materials, structures, and sensing capabilities has led to a wide range of applications, with the potential to revolutionize various industries. Some key applications and future trends include:

A. Robotics

E-skin has found significant applications in the field of robotics, with neuro-inspired e-skin [14] and printed synaptic transistor-based e-skin [12] enabling robots to feel, learn, and adapt to their environment. This technology enhances robotic performance and versatility, facilitating more natural and sophisticated interactions with the environment and humans.

B. Prosthetics

Pursuing prosthetic electronic skin [4] allows for the development of advanced prosthetic devices that closely mimic the sensory capabilities of human skin. This technology can improve the quality of life for amputees and people with disabilities by providing more natural and intuitive sensory feedback.

C. Wearable electronics

Flexible e-skin has been employed in wearable electronic devices for healthcare monitoring and human comfort management [1, 16]. These devices can continuously monitor vital signs, temperature, and humidity, providing valuable insights into an individual's health and well-being.

D. Human-machine interfaces
E-skin has shown promise in developing advanced human-machine interfaces [13, 18] that enable more intuitive and efficient interactions between humans and electronic devices. By integrating pressure and force sensing capabilities, e-skin can provide more precise control and feedback, improving overall user experience.

E. Biodegradable e-skin

The development of biodegradable electronic skin [5] offers an environmentally friendly alternative to conventional e-skin materials. These materials can reduce waste and facilitate the disposal of e-skin devices, promoting sustainability in the rapidly growing field of e-skin research.

8. Future trends

The future of flexible e-skin research will likely be driven by several key trends, focusing on improving sensing capabilities, mechanical properties, biocompatibility, and the integration of artificial intelligence (AI) and machine learning (ML) algorithms to enhance performance and adaptability. Researchers will strive to develop sensors with higher sensitivity, selectivity, and response times by exploring novel materials, combinations of materials, and advanced nanostructuring techniques. Efforts will also be directed towards enhancing the mechanical properties of e-skin materials and structures, such as flexibility, stretchability, and durability, through the development of innovative materials, composites, and fabrication techniques. Additionally, the integration of AI and ML algorithms will play a pivotal role in refining e-skin devices' adaptability and performance, allowing them to efficiently process and analyze the collected data. These advancements will enable the creation of cutting-edge e-skin devices for a wide range of applications, revolutionizing various industries and pushing the boundaries of e-skin technology.

9. Summary

Flexible electronic skin has made significant advancements in recent years, thanks to the development of novel materials, structures, and sensing capabilities. Researchers have explored various materials, such as conductive polymers, carbon nanotubes, graphene, bacterial cellulose, and biodegradable materials, to create e-skin with unique properties tailored to specific applications. The resulting structures and architectures have enabled a wide range of sensing capabilities, including strain, temperature, humidity, pressure, force, and visible light sensing.

The integration of artificial intelligence and machine learning algorithms in e-skin designs has further enhanced the potential of this technology, enabling more advanced applications and improved performance in fields such as robotics, prosthetics, wearable electronics, and human-machine interfaces. As research continues to advance, the future of flexible e-skin is expected to focus on improving sensing capabilities, mechanical properties, and biocompatibility, while also exploring novel materials and structures that push the boundaries of e-skin technology.

Overall, flexible electronic skin holds great promise for revolutionizing various industries and improving the quality of life for many individuals. The ongoing research and development efforts in this field are poised to deliver increasingly sophisticated and versatile sensing solutions that can cater to a wide range of applications and needs.

References


