The Influence of Acoustic Parameters and Tuning Orientation on User Experience

Churan Zhou*
Leicester International Institute, Dalian University of Technology, Panjin, 124221, China
*Corresponding author: Cr.Z@mail.dlut.edu.cn

Abstract. This article reviews the influence of acoustic parameters and tuning orientations on the performance of acoustic systems and discusses the application of statistical methods in analyzing this influence. To begin with, the article presents an overview of the fundamental concepts and classifications of acoustic parameters and tuning orientations. This establishes a foundation for further exploration of their effects on acoustic system performance. The article then delves into the role of statistical methods in studying the impact of these parameters and orientations. It emphasizes the importance of statistical analysis in quantifying and evaluating their influence on system performance. Various research methods utilizing statistical techniques are also discussed in detail. Then, the current research results are summarized and analyzed, and directions and prospects for future research are proposed. Overall, the objective of this paper is to serve as a valuable reference and guide for utilizing statistical methods to optimize acoustic parameters and tuning orientations. By doing so, the aim is to enhance the performance of hearing systems and ultimately improve the overall user experience.

Keywords: Acoustic parameters, tuning orientation, sound system, user experience.

1. Introduction

With the development of technology and the expansion of application areas, the influence of acoustic parameters and tuning orientations on the performance of sound systems is receiving more and more attention. In practical applications, how to optimize the performance of good systems according to changes in acoustic parameters and tuning orientations has become one of the hot topics of research. At the same time, as acoustic system performance is influenced by various factors, such as spatial environment, noise interference, etc., there is often a certain degree of uncertainty and randomness in the collected data. Therefore, applying statistical methods can help the author analyses and process the data more accurately and reveal the laws of acoustic parameters and tuning orientations on the performance of sound systems.

This review-based thesis will address the following aspects: Firstly, it introduces the basic concepts and classifications of acoustic parameters and tuning orientations. Secondly, it explores the mechanisms of statistical methods in analyzing the effects of acoustic parameters and tuning orientations on the performance of acoustic systems and their research methods. Finally, it summarizes and analyses the current research results and proposes future research directions and outlooks. Through the study of these issues, the objective is to offer reference and guidance for leveraging statistical methods to optimize acoustic parameters, tuning orientations, and ultimately enhance the performance of hearing systems.

Firstly, the article aims to categorize the available literature: the first category is about the subjective and objective evaluation of acoustic parameters in different indoor situations, the second category is about the other effects of sound in different indoor scenarios with varying effects on the user, and the third category is about the user experience of outdoor audio. All three types of literature deal with acoustic parameters, tuning preferences and user experience. However, there needs to be more combined influence of acoustic parameters and tuning preferences and a relatively uniform standard for user experience.

According to Rindel, using experimental measurements and computational simulations, the authors explore the effects of acoustic parameters such as absorption properties and reflection
characteristics on musical performances and make some suggestions for improving the room's acoustic environment [1]. In Floyd, sound reproduction in small spaces is investigated. Jukka et al. provided an overview of methods for assessing acoustic perception in concert halls. The paper provides important insights into the auditory assessment of concert halls, highlighting the application and development of subjective and objective assessment methods in studying acoustic perception in concert halls [2, 3]. Both articles in this category can point to the personal and objective evaluation of acoustic parameters. Still, the evaluation system does not come down to the user experience but mainly explores the influence of sound parameters and the associated sound genus output of the tuning.

Kersti’s paper investigated the impact of room acoustic parameters on the subjective perception of voice privacy in an open-plan office through an exploratory study. This paper provided important insights into the relationship between acoustic parameters and perceptions of speech privacy, highlighting the importance of the acoustic environment for speech privacy in open-plan offices [4]. John and colleague conducted a study on speech intelligibility in primary school classrooms. This paper provided important insights into the impact of classroom acoustical environments on speech intelligibility, emphasizing the influence of classroom acoustics on students' learning and teaching effectiveness [5]. Cheng et al. investigated the effects of sound field amplification and reverberation on speech perception in cochlear implant listeners [6]. Unlike the first category of articles, which used relatively broad acoustic parameters to study their effects on different user groups, this category adds more psychoacoustic descriptions and findings, such as language comprehension and auditory perception, to the direction of influence. The same problem as in the first category is that the indicators studied are specific to a particular group and must be generalizable. Also, most of them could be more comprehensive about the acoustic parameters of each scene and should be weighted for the influence of each parameter.

With Jinhee et al. examining the perceived effects of outdoor sound transmission, this paper provided important information on the perceptual effects of outdoor sound propagation, highlighting the application and importance of subjective assessment methods and influencing factors in outdoor sound propagation research [7]. This category of articles complements the previous two categories of research on outdoor scenarios, where factors affecting acoustic parameters are added to the outdoor conditions. However, only research on sound propagation is available, with a short description of the user experience. As people's listening needs increase when travelling, the outdoor user experience also requires uniform standards and tuning adaptations.

In summary, the influence of acoustic parameters and tuning orientations on the user experience has important theoretical and practical implications. Using various research methods, such as experimental measurements, simulation calculations and statistical analysis, the influence mechanisms and laws can be revealed to provide reference and guidance for optimizing the performance of acoustic systems.

2. Statistical methods for analyzing the parameters

First of all, this article provides a fundamental conceptual introduction and classification of acoustic parameters in audio systems. Acoustic parameters are physical quantities that describe the sound characteristics of a good system. Common acoustic parameters include sound pressure level, frequency response, phase response, reverberation time, et al. [8]. The sound pressure level reflects the intensity of the sound. The frequency response describes the attenuation and amplification of the sound at different frequencies. The phase response measures the temporal characteristics of the sound waveform. The reverberation time measures the reflection and attenuation of the sound. Tuning orientation refers to adjusting acoustic parameters to achieve a specific sound effect according to the application requirements of the good system. Common tuning orientations include enhancing low-frequency effects, expanding the soundstage, improving intelligibility, etc.
Statistical methods play an important role in analyzing the effects of acoustic parameters and tuning orientations on the performance of sound systems. This section details the statistical methods and research designs commonly used to investigate the mechanisms of the effects of acoustic parameters and tuning orientation.

2.1. Data collection and experimental design

To analyze the effects of acoustic parameters and tuning orientation on the performance of an auditory system, it is first necessary to collect a large amount of data and design a suitable experiment. The data can be ordered through laboratory tests, field recordings, etc. The experimental design should consider the choice of independent variables (settings of acoustic parameters and tuning orientation) and dependent variables (acoustic system performance indicators), as well as the control of possible interfering variables. A sound experimental design and data collection are the basis for subsequent statistical analysis.

2.2. Descriptive statistical analysis

Descriptive statistical analysis is used to summaries the basic characteristics of the data. Common descriptive statistics include mean, standard deviation, median, minimum and maximum values. Descriptive statistical analysis of performance indicators under different acoustic parameters and tuning orientations provides information on each data set's distribution and central tendency.

2.3. Hypothesis testing

Hypothesis testing determines whether the effects of different acoustic parameters and tuning orientations on performance indicators are statistically significant. Common hypothesis testing methods include the t-test and ANOVA. A t-test compares differences between two groups, while an ANOVA compares differences between multiple groups, and this method can be referred to the application of ANOVA in engineering [9]. Hypothesis testing can help to determine whether acoustic parameters and tuning orientation have a significant effect on the performance of an audio system.

2.4. Correlation analysis

Correlation analysis explores the correlation between acoustic parameters, tuning orientation, and performance indicators. The strength and direction of the linear relationship between the two variables can be assessed by calculating the correlation coefficient. Commonly used methods of correlation analysis include Pearson's correlation coefficient and Spearman's rank correlation coefficient. Correlation analysis can reveal the degree of correlation between acoustic parameters and tuning orientations and performance indicators, helping further understand the influence mechanisms.

2.5. Regression analysis

Regression analysis explores the quantitative relationship between acoustic parameters and tuning orientation on performance indicators. By building regression models, changes in performance metrics can be predicted, and the contribution of acoustic parameters and tuning orientation to performance can be determined. Linear, multiple, and stepwise regression can be applied to the regression analysis of acoustic parameters and adjusting exposure on sound system performance.

2.6. Multivariate analysis

The multivariate analysis considers the interaction effects between multiple acoustic parameters and tuning orientations. Methods such as principal component analysis, cluster analysis and factor analysis can help to extract the main dimensions and patterns in the data and reveal the combined effects of acoustic parameters and tuning orientations on the performance of an auditory system.
2.7. Data modelling and simulation

Data modelling and simulation methods can be used to develop mathematical models of the effects of acoustic parameters and tuning orientations on the performance of hearing systems. For example, regression analysis results can be used to build predictive models to predict performance metrics for specific acoustic parameters and tuning orientations. In addition, numerical simulation methods, such as finite element analysis and sound field simulation, can be used to simulate the effects of different acoustic parameters and tuning orientations on the performance of hearing systems, thereby improving the understanding of the mechanisms of their impact [10].

In summary, statistical methods play a key role in analyzing the mechanisms by which acoustic parameters and tuning orientations affect the performance of hearing systems. Through rational data collection, experimental design and selection of statistical analysis methods, the influence of acoustic parameters and tuning orientation can be more accurately understood, providing a scientific basis and guidance for optimizing the performance of hearing systems.

3. Analysis of existing research results

3.1. Influence on sound system performance

A wide range of studies have extensively explored the influence of acoustic parameters and tuning orientations on the performance of sound systems. By employing statistical methods for data analysis, these studies have gathered substantial experimental data and conducted thorough statistical analyses to assess the effects of acoustic parameters and tuning orientations on the overall performance of sound systems. Through these investigations, researchers have aimed to enhance our understanding of how variations in acoustic parameters and tuning orientations can impact the quality and effectiveness of sound systems. The use of statistical analysis has allowed for objective and quantitative evaluation, providing valuable insights into the relationship between these factors and sound system performance. Overall, these studies contribute to the ongoing efforts to optimize acoustic parameters and tuning orientations for the improvement of sound system performance.

3.2. Sound pressure level and its effects

Sound pressure level has been extensively studied as an acoustic parameter. Researchers have manipulated the volume of sound systems to alter the sound pressure level and recorded subjective perceptions and objective measures, such as the dynamic range of music and noise levels. Statistical analysis of the data has revealed that increasing the sound pressure level enhances the overall impact and appeal of the sound system. However, it is important to strike a balance between comfortable listening levels and potential auditory fatigue or distortion caused by excessively high sound pressure levels [11].

3.3. Frequency response and its effects

The acoustic parameter of frequency response has received significant attention in research. By conducting frequency response tests on sound systems and combining them with auditory experiments and subjective evaluations, researchers have investigated the influence of frequency response on sound quality. Statistical analysis has shown that a flat frequency response and good linearity contribute to accurate and faithful audio reproduction. Furthermore, the diffuseness of sound affects the perception of spatiality and stereo imaging [12].

3.4. Reverberation parameters and equalizer settings

Reverberation parameters and equalizer settings within tuning orientations have been widely explored. Researchers have adjusted parameters such as reverberation time and intensity to manipulate the sense of environment and depth in music. Statistical analysis has revealed relationships between reverberation parameters and factors such as music genres and performance
venues. Additionally, the settings of equalizers play a crucial role in frequency balance and musical expression. Through statistical analysis, researchers can determine appropriate equalizer settings that achieve the desired sound effects.

3.5. Evaluation of user experience

In addition to statistical methods used in numerous studies to explore the influence of acoustic parameters and tuning orientations on sound system performance, it is essential to take into account user experience factors that go beyond objective metrics during practical evaluations of sound systems. Thus, there is a need to establish standardized evaluation criteria that consider user experience, which becomes a crucial aspect in optimizing acoustic parameters and tuning orientations. By incorporating user-centric perspectives into the evaluation process, we can further enhance the overall performance and satisfaction of sound systems.

3.6. Subjective evaluation

Subjective assessment plays a significant role in evaluating user experience. By engaging users in auditory experiments and capturing their subjective evaluations through questionnaires, researchers can gather valuable perceptual and preference information concerning various acoustic parameters and tuning orientations. The collected subjective evaluation data can be analyzed using statistical methods like factor analysis and cluster analysis. These techniques enable researchers to uncover essential dimensions and patterns within user preferences. Through such analysis, researchers gain insights into the specific aspects of sound quality and tuning orientations that contribute to a positive user experience. By comprehending these fundamental dimensions, developers and designers can optimize acoustic parameters and calibration alignments to enhance user satisfaction and tailor sound systems in accordance with their preferences. The integration of subjective assessment and statistical analysis empowers researchers to objectively explore the relationship between user perception and acoustic attributes, enabling them to make informed decisions in optimizing sound system performance.

3.7. Objective evaluation metrics

Objective evaluation metrics serve as important benchmarks for measuring user experience. These metrics can be derived from audio signal data and psychoacoustic measurements. For example, indicators like signal-to-noise ratio, speech intelligibility, and audio equalization are used to assess the influence of acoustic parameters and tuning orientations on sound system performance. Currently, the reference evaluation metric available is the Harmon curve, which is based solely on statistical results of the frequency response curve [13]. Therefore, parameters such as distortion and reverberation time require similar statistical results to be available. Statistical methods can be applied to analyze objective evaluation metric data, including statistical significance tests and correlation analysis, to quantify the impact of different acoustic parameters and tuning orientations on objective indicators [14].

3.8. Integration of subjective and objective evaluations

In order to establish a comprehensive framework for evaluating user experience, it is advantageous to combine subjective and objective evaluations. The integration of subjective assessments, based on user perceptions and preferences, with objective metrics derived from audio signal analysis and psychoacoustic measurements allows for a more holistic understanding of sound system performance. By applying statistical methods such as correlation analysis and regression analysis, researchers can investigate the correlation and causal relationship between subjective and objective evaluations. This analysis aids in the development of a unified evaluation model, which serves as a valuable tool for setting performance optimization goals and defining standards for sound systems. This evaluation model can be analogous to the evaluation model of audio recognition, using machine learning to build the model [15]. With the guidance provided by this model, designers and engineers can make
informed decisions regarding the adjustment of acoustic parameters and tuning orientations, ultimately enhancing the user experience by delivering optimized sound quality and immersive auditory environments.

4. Future research directions and outlook

Although some progress has been made in studying acoustic parameters and tuning orientations, many issues still need further research. Firstly, future research can further explore the influence mechanisms of acoustic parameters and tuning orientations through large-scale data collection and in-depth analysis. Combining subjective evaluations and objective indicators, more accurate mathematical models can be established to reveal the laws that influence the performance of different parameter settings and orientations on acoustic systems.

Secondly, the research can consider the effects of changes in acoustic parameters and tuning orientations on acoustic performance under different environmental conditions. For example, the acoustic characteristics of the room environment, noise disturbances and alterations in listener position may all impact the perception of sound. By combining field experiments and simulation models, the effects of these factors on the sound system’s performance can be investigated in depth, and corresponding optimization methods can be proposed.

In addition, new methods combining techniques such as machine learning and artificial intelligence can be explored to optimize acoustic parameters and tuning orientations. Intelligent sound system optimization models can be established using big data and automated algorithms to enable adaptive adjustments and personalized sound experiences.

Finally, studying acoustic parameters and tuning orientations can also be combined with user experience and preference data. By analyzing user feedback and preference data, it is possible to understand further different users’ perceptions and preferences of acoustic parameters and tuning orientations and thus provide personalized sound configuration and optimization recommendations.

5. Conclusion

This paper has reviewed the influence of acoustic parameters and tuning orientations on the performance of audio systems and explored the application of statistical methods in analyzing this influence. By combining a large amount of experimental data and statistical methods, some insights into the impact of acoustic parameters and tuning orientations have been gained. Future research could explore in further depth the mechanisms of influence of different parameters and directions and combine user data and intelligent techniques to achieve personalized sound optimization. In other research, establishing a unified user experience standard is key. Through a combination of subjective and objective evaluations, a suitable performance assessment model for sound systems can be based on comprehensively considering user perceptions and objective indicators. With the above-unified evaluation criteria and impact mechanisms, audio manufacturers can utilize statistical methods better to optimize acoustic parameters and tuning orientations to improve the performance of audio systems and provide users with a better-quality music and sound experience.

References


