Cerebral Cavernous Malformation (CCM): Unraveling the Genetic Basis, Challenges in Diagnosis and Treatment, and Ongoing Research Efforts

Zhe Song*
Clinical Medicine, Harbin Medical University, Harbin, China
*Corresponding author: 1910718222@mal.sit.edu.cn

Abstract. The weakened blood vessels associated with cerebral cavernous malformation (CCM) can result in symptoms such as seizures, stroke-like symptoms, headaches, sensory disturbances, and life-threatening hemorrhages. Symptoms significantly impact daily life and may be challenging to diagnose due to their nonspecific nature. Diagnosing CCM can be challenging due to the lack of specific symptoms, and treatment decisions are complex, considering factors such as the location, size, and associated symptoms of the malformations, as well as the overall health of the individual. Treatment options range from conservative management to surgical interventions, each with its own benefits and risks. Ongoing research efforts focus on unraveling the genetic basis, underlying mechanisms, and potential targeted therapies for CCM. Advances in genetic testing and imaging techniques play a crucial role in improving diagnosis and treatment strategies. This article provides a comprehensive overview of CCM’s epidemiology, genetic Basis, challenges in diagnosis and treatment, and ongoing research aimed at better understanding and managing this condition.

Keywords: Cerebral cavernous malformation, epidemiology, diagnosis, treatment.

1. Introduction

Cerebral cavernous malformation (CCM), is an uncommon genetic disorder distinguished by the occurrence of anomalous blood vessels in the brain and spinal cord, which have no muscle layer or elastic fibers, are embedded in the collagen matrix, have no neurons, and there is no brain tissue inside. The capillary walls around the lesion often deposit ferroflavin [1]. The presence of abnormal blood vessels in the brain and spinal cord can lead to a range of health issues, such as seizures, stroke-like symptoms, headaches, sensory disturbances, and even life-threatening hemorrhages. Symptoms like headaches, seizures, and neurological deficits can significantly impact work or school performance, social interactions, and daily activities.

CCM follows an autosomal dominant inheritance pattern, which implies that individuals affected by the condition have a 50% chance of transmitting it to their offspring. This genetic link has implications for family members who may need to undergo screenings or make decisions regarding family planning. Diagnosing CCM can be challenging as it often lacks specific symptoms and may remain asymptomatic for an extended period. Moreover, treatment decisions can be complex, as they depend on factors such as the location and size of the malformations, associated symptoms, and the overall health of the individual. Treatment options vary from conservative management to surgical interventions, each with its own benefits and risks.

CCM has garnered increased attention within the scientific community, leading to heightened research efforts aimed at understanding its genetic basis, underlying mechanisms, and potential targeted therapies. Advances in genetic testing and imaging techniques contribute to improved diagnosis and treatment strategies. This article aims to discuss the epidemiology of CCM, the underlying mechanisms of the condition, the current status and challenges in diagnosis and treatment, as well as ongoing research efforts aimed at gaining a better understanding of CCM and finding improved management strategies.
2. Epidemiology

2.1. Prevalence of CCM Disease

The exact prevalence of CCM is difficult to determine due to various factors, including the variability of symptoms, the presence of asymptomatic cases, and potential underdiagnosis. Research findings indicate that CCM is 0.16% to 0.9% [2]. This means that for every 1,000 individuals, around 1 to 9 may have CCM.

2.2. Gender and Ethnic Differences in Prevalence

CCM has shown some variations in prevalence with regards to gender and ethnicity. In terms of gender differences, some studies have reported a slightly higher prevalence or incidence of CCM in females compared to males [3]. There is evidence indicating that ethnicity influences the prevalence of CCM. Hispanic populations, particularly those of Hispanic American or Mexican descent, have been reported to have a higher prevalence of CCM [4]. This is associated with a specific genetic mutation (CCM1) that is more common in these populations. Further studies are necessary to explore other potential ethnic disparities in CCM prevalence.

3. Genetic Basis of CCM Disease

3.1. Overview of Genes Responsible for CCM disease

Mutations in specific genes that are conclusive for the development and maintenance of vasculature are involved in CCM. Understanding the genes responsible for CCM is key to revealing the underlying mechanisms of this condition. CCM is associated with three identified genes: CCM1 (KRIT1), CCM2 (MGC4607), and CCM3 (PDCD10), which linked to the development of the condition. Mutations in any of the aforementioned genes can result in the development of CCM. The condition follows a pattern of autosomal dominant inheritance, meaning affected individuals have a 50 percent probability of transmitting it to their children. These genes are involved in signaling pathways and cellular processes that regulate the integrity of blood vessels, meaning they occur without a family history of the disease.

3.2. Mutated Genes

The mutated genes in CCM contribute to the abnormal formation and maintenance of blood vessels, specifically in the brain and other tissues affected by this condition.

3.2.1 CCM1 (KRIT1)

CCM1, also known as KRIT1 (Krev Interaction Trapped 1) [5]. The KRIT1 protein, encoded by the CCM1 gene, plays a crucial role in maintaining the integrity of blood vessels and ensuring proper signaling between cells that make up the blood vessel walls. Mutations in the CCM1 gene disrupt normal cellular interactions and contribute to the formation of abnormally structured blood vessels, leading to the progress of the lesions. Understanding genetic basis of the CCM, including the role of CCM1, is important for further research and potential targeted therapies in the future.

3.2.2 CCM2 (MGC4607)

CCM2, also known as MGC4607 (Multiple CCM domain-containing protein 2). CCM2 gene mutations are accountable for a subset of hereditary CCM cases [6]. The CCM2 protein plays a role in multiple cellular processes, such as cell-to-cell signaling and the regulation of blood vessel formation and maintenance. Disruptions in these processes occur when there are mutations in the CCM2 gene, resulting in the development of abnormal blood vessels and the formation of the lesions. CCM2 in the pathogenesis of CCM is still under investigation, and additional research is required to fully comprehend its impact on the disease and its potential implications for targeted therapies.
3.2.3 CCM3 (PDCD10)

Mutations in the CCM3 gene are responsible for a subset of inherited cases of CCM [7]. The regulatory functions of the CCM3 protein are crucial in controlling signaling pathways associated with cell growth, survival, and the formation of blood vessels. It is involved in maintaining the integrity of blood vessels and promoting normal cellular interactions within the blood vessel walls. Disruptions in these processes occur when mutations arise in the CCM3 gene, resulting in the development of abnormal blood vessels and the formation of CCM lesions. Advancing our understanding of the involvement of CCM3 in the development of CCM is crucial for expanding our knowledge about the disease and investigating potential targeted therapies in the future.

These mutated genes ultimately disrupt the normal interactions between the endothelial cells, smooth muscle cells, and also the extracellular matrix within blood vessels. This disruption compromises the integrity of the vessel walls, leading to the formation of cavernous malformations and making them prone to leakage and hemorrhage. It is important to note that while these three genes are associated with familial forms of CCM, the genetic basis of sporadic cases (those without a family history) is still not fully understood. Sporadic cases may involve different genetic or environmental factors that contribute to the development of CCM.

4. Diagnosis

4.1. Imaging Studies for Diagnosis

The utilization of imaging techniques is pivotal in diagnosing CCM as it allows for the identification of cavernous malformations in the brain or other affected regions, determining their presence and precise locations.

MRI is widely recognized as the most reliable method for imaging CMs, thus is the primary imaging modality for diagnosing CCM, offering detailed imaging information to facilitate accurate diagnosis and treatment planning [8]. It provides detailed images of the brain and can detect the characteristic appearance of cavernous malformations. On MRI, CCM lesions typically appear as round or oval-shaped "cavities" with a popcorn-like appearance, due to multiple tiny blood-filled vascular spaces. The advantages of MRI in the diagnosis of CCM include high-resolution imaging that allows clear visualization of vascular malformations, multiple imaging sequences that aid in detecting and distinguishing CCM lesions, radiation-free imaging that ensures safety, multi-planar imaging providing different perspectives of the brain, and functional imaging techniques for evaluating the effects of CCM on brain function and blood flow.

Specifically, T2-weighted gradient echo (GRE) sequences are highly effective due to the heightened sensitivity [9]. These sequences enhance the visualization of the characteristic hemosiderin deposits (iron) within the cavernous malformation, which appear as areas of hypo-intensity or signal loss on MRI. Gradient Echo Sequences offer several advantages in the diagnosis of CCM. They are highly sensitive to microhemorrhages, allowing for the detection of small or asymptomatic lesions. These sequences provide improved contrast between CCM lesions and surrounding brain tissue, aiding in accurate detection and differentiation from other similar-looking lesions. They can evaluate blooming artifacts caused by blood products in CCM, confirming lesion presence and extent. Additionally, Gradient Echo Sequences offer time-efficient imaging, which is particularly useful for patients who may have difficulty remaining still. Overall, these advantages contribute to the accurate identification and characterization of CCM lesions.

Susceptibility-weighted imaging (SWI) exhibits exceptional sensitivity to alterations in magnetic susceptibility caused by deoxygenated blood products [10]. SWI can provide better visualization of small CCM lesions and their associated hemosiderin deposits, improving detection accuracy. Susceptibility-Weighted Imaging (SWI) is highly valuable in the diagnosis of CCM. It offers high sensitivity to blood products, allowing for the detection of small or asymptomatic lesions. SWI provides improved visualization and contrast of CCM lesions, aiding in accurate diagnosis and
differentiation from other similar conditions. The identification of the characteristic "swirl sign" on SWI enhances diagnostic accuracy. Additionally, SWI's multiplanar imaging capability allows for comprehensive evaluation of CCM lesions and their spatial relationships. Furthermore, SWI can detect microbleeds associated with CCM, providing important information for disease progression and treatment planning. In summary, SWI plays a pivotal role in the precise diagnosis and characterization of CCM by providing improved sensitivity, visualization, and supplementary diagnostic capabilities.

4.2. Genetic Testing for Confirmation

Genetic testing aims to identify mutations in the known CCM genes to confirm the diagnosis. It can also assist in determining whether the condition follows an autosomal dominant inheritance pattern. In particular, individuals who have a genetic predisposition to CCM or are younger in age who develop multiple cavernous malformations may receive a recommendation for genetic testing [11].

Genetic testing is performed through DNA analysis, usually using a blood sample. The specific testing method may vary, but it often involves targeted sequencing or gene panel testing that focuses on the three CCM genes. If a pathogenic mutation is identified in one of these genes, it provides confirmation of CCM diagnosis and allows for genetic counseling and testing of at-risk family members.

It's worth noting that genetic testing is not routinely performed in all cases of CCM since most cases occur sporadically and are not associated with a known family history. However, it can be beneficial for individuals with a suspected hereditary form of the condition or in research settings to further understand the underlying genetic mechanisms of CCM.

5. Treatment Options

5.1. Surgical Intervention

Surgical treatment is often considered for symptomatic or high-risk CCMs. The goals of surgery are to remove the malformation, prevent future bleeding, and alleviate symptoms.

5.1.1 Microsurgical resection

Microsurgical resection is a treatment option for CCM in select cases. It involves the surgical removal of the CCM lesion using a highly precise microscope and specialized instruments. In certain cases where the CCM lesion is causing significant neurological symptoms, such as recurrent seizures or progressive neurological deficits, the possibility of microsurgical resection can be considered. The goal of the surgery is to remove the CCM lesion while preserving surrounding healthy brain tissue and minimizing the risk of complications.

Successful cases of microsurgical resection for CCM have been reported in the medical literature [12]. These cases often involve careful preoperative planning, sophisticated imaging techniques, and the expertise of skilled neurosurgeons. However, it is important to note that not all CCM cases require or are suitable for microsurgical resection. The decision to perform surgery depends on various factors, including the location, size, and symptoms associated with the CCM lesion, as well as the overall health of the patient. And it is essential to weigh the potential benefits against the risks and individualize treatment decisions based on each patient's unique situation.

5.1.2 Stereotactic radiosurgery (SRS)

SRS may be used for deep-seated or surgically inaccessible CCMs. It uses precisely targeted radiation beams to create a controlled injury within the malformation, promoting its gradual regression and reducing the risk of bleeding. SRS is a non-invasive approach that employs high-dose radiation to precisely target CCM lesions. Its objective is to diminish the size of the lesions and prevent bleeding.
However, CCM lesions consist mainly of vascular structures without a defined tumor morphology. SRS is primarily used for treating solid tumors, which raises concerns about the effectiveness and safety of using SRS for CCM treatment.

While there have been reported cases of SRS being used for CCM treatment, the current evidence is insufficient to support its widespread application [13]. Further research and clinical trials are still underway to evaluate the potential of SRS in treating CCM.

5.2. Medications for Management of Symptoms

While there is currently no medication specifically approved to treat CCM itself, certain medications may help manage symptoms and prevent complications:

5.2.1 Antiepileptic drugs (AEDs)

It is common that CCM patients experience seizure activity. Proper utilization of AEDs can aid in decreasing the frequency and intensity of seizures. This enables patients to effectively manage their symptoms, mitigate the risk of accidental injuries, and enhance their overall quality of life. Some research suggests that certain AEDs may have inhibitory effects on the progression of CCM [14]. While there is currently no conclusive evidence from large-scale clinical trials that directly supports AEDs in preventing the advancement of CCM, controlling seizures with AEDs may indirectly decrease the likelihood of complications associated with CCM. Apart from managing seizures, AEDs can also serve as adjunctive therapy in the treatment of CCM. For instance, certain AEDs possess sedative and anxiolytic properties, which can help patients cope with the psychological and emotional issues related to CCM.

5.2.2 Pain Management

CCM patients may often experience different types and degrees of pain, including headaches, pain caused by seizures, neuropathic pain, among others. Effective pain management can improve the quality of life for patients and alleviate their discomfort [1]. Medications used for pain management can help alleviate the headaches and other pain associated with CCM. Different types of analgesics, including over-the-counter medications like ibuprofen and prescription opioids, can be employed to relieve mild to moderate pain. Effective pain relief can enhance the overall quality of life for CCM patients. By reducing pain symptoms, patients can engage in daily activities, work, and socialize more comfortably, leading to increased satisfaction and well-being. CCM treatment often involves long-term management and may include complex procedures such as surgery or radiation therapy. Pain can potentially impact treatment compliance. By providing effective pain relief, medication pain management helps patients adhere to their treatment plans and enhances the likelihood of successful outcomes.

5.3. Gene Therapies for CCM

Gene therapy aims to correct the underlying genetic defect responsible for CCMs. Research in this field has primarily focused on three genes associated with familial CCMs.

CRISPR-Cas9: This gene-editing technology has shown promise in correcting CCM gene mutations in animal models. Researchers have successfully used CRISPR-Cas9 to modify target genes and reduce the formation of cavernous malformations.

RNA Interference (RNAi): RNAi is a technique that can silence specific genes. Studies have explored using RNAi to selectively suppress the expression of CCM genes, reducing the development and growth of CCM lesions.

Viral Vectors: A common approach in gene therapy involves using viral vectors to deliver corrected genes or gene silencing machinery to the affected cells. Various viral vectors, including adeno-associated viruses (AAVs), lentiviruses, and herpes simplex viruses, have been explored for their potential in delivering therapeutic genes to the brain.
5.4. Targeted Drugs for Prevention and Reduction of CCM

In addition to gene therapies, researchers have been investigating targeted drugs that may help prevent the formation and reduce the size of CCMs [5].

ROCK Inhibitors: Rho-associated protein kinase (ROCK) inhibitors have shown promise in preclinical studies for reducing CCM lesion formation and stabilizing existing lesions. These inhibitors work by modulating cellular processes involved in abnormal blood vessel formation.

Angiogenesis Inhibitors: Drugs that inhibit angiogenesis, the formation of new blood vessels, have been explored as potential therapeutic options for CCMs. In specific cases, anti-angiogenic agents like bevacizumab and sunitinib have shown promising results in decreasing the size of lesions and alleviating symptoms associated with CCM.

Anti-inflammatory Agents: The development and growth of CCMs can be influenced by the presence of inflammation. Therefore, drugs targeting inflammation pathways, such as statins or anti-inflammatory cytokines, are being investigated for their potential in reducing CCM lesion progression and associated complications.

It's important to note that these research areas are still evolving, and clinical application is limited. Further studies, including clinical trials, are needed to validate the efficacy, safety, and long-term effects of gene therapies and targeted drugs for CCM treatment.

6. Conclusion

CCM leads to easy leakage and causing symptoms like headaches, seizures, and neurological deficits. CCM disease is linked to genetic mutations in specific genes.

A cure for CCM disease is currently unavailable. The management of CCM disease focuses on relieving symptoms, preventing complications, and providing supportive care. Treatment options include medication for symptom control, surgical removal of cavernous deformities, radiosurgery, surveillance imaging, and genetic counseling.

Advancements in surgical techniques, including minimally invasive and image-guided methods, have enhanced the safety and efficacy of surgical interventions. Ongoing research aims to further improve surgical procedures, reduce risks, and optimize outcomes for patients who require surgery. This facilitates informed decision-making by healthcare providers regarding diagnosis, treatment strategies, monitoring protocols, and follow-up care, thereby standardizing and optimizing patient management.

Furthermore, collaborative efforts among researchers, pooling resources, data, and expertise, are essential. By gaining a comprehensive understanding of the disease and developing innovative treatments and prevention approaches, the goal is to increase the rate of CCM cures.

In conclusion, continuous research plays a vital role in enhancing our understanding of CCM disease, improving treatment options, and ultimately optimizing patient outcomes. Through gene discovery, targeted therapies, biomarker identification, improved surgical techniques, guideline development, and collaborative endeavors, researchers strive toward more effective management strategies and potentially discovering cures for CCM disease.

References


