Advancements, Challenges, and Future Directions of Stem Cell Therapies in Skin Cancer

Yuehan Li
Department of Biology, University of Toronto, Toronto, Canada
Yuehan.li@mail.utoronto.ca

Abstract. Skin cancer, one of the most prevalent malignancies worldwide, remains a significant challenge for global healthcare systems. Despite the availability of numerous treatments, many patients face suboptimal outcomes and a range of adverse effects. In the quest for more effective therapeutic strategies, attention has turned to stem cells, renowned for their unique ability to differentiate and regenerate. These attributes position them as potential game-changers in skin cancer therapeutics. This comprehensive review delves into the multifaceted world of skin stem cells, exploring their diverse types and the roles they play in tissue repair and regeneration. The current landscape of stem cell utilization in skin cancer therapy is examined, highlighting inherent limitations and proposing innovative solutions. By looking into future advancements, the review offers a panoramic view of stem cell applications across various global contexts. The aim is to amalgamate the existing body of knowledge, pinpoint areas awaiting further exploration, and pave the way for more effective strategies in skin cancer management.

Keywords: Skin cancer, stem cell therapy, iPSCs.

1. Introduction

Skin cancer is a prevalent condition with a significant disease burden worldwide. Current therapies such as surgery, chemotherapy, and radiation, while effective, have various drawbacks including scarring, systemic side effects, and recurrence risk. Stem cell (SCs), which are found in all multicellular organisms, are defined as self-renewing undifferentiated cells with the potential to give rise, maintain, and replace specialized cells in the body. These cells possess two crucial properties: they can self-replicate while remaining undifferentiated and have the ability to differentiate into specialized cell types in vivo and in vitro [1]. There are two major groups for stem cells which are, embryonic stem cells (pluripotent) and adult stem cells (multipotent) (Fig.1). While pluripotent stem cell can differentiate into any desired cell type, multipotent stem cell differentiates into more specialized cell type (Fig.1).

Totipotent stem cell has the ability to generate living and functional multicellular organisms. There is a decrease in number of stem cells when Totipotent generated to Pluripotent stem cells because the cell is required to take on more specialized function within the body as development progresses and will reach eventually slight less undifferentiated states but not completely committed to a give lineage. Stem cell-based therapies particularly those involving skin stem cells, present an intriguing alternative approach, potentially facilitating wound healing and cell regeneration, as well as offering a more personalized treatment modality [1, 2]. However, different countries employ varying protocols in stem cell therapy, leading to inconsistent results and complicating comparative analyses.

Figure 1. The hierarchy of Stem cell. The figure is reproduced from [1]
2. Current Status

Table 1. Current Application for most common skin cancer

<table>
<thead>
<tr>
<th>Skin Cancer Type</th>
<th>Description</th>
<th>Challenges in Treatment</th>
<th>Side Effects of Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Melanoma</td>
<td>A form of skin cancer often requiring a combination of therapies</td>
<td>Resistance can develop against immune checkpoint inhibitors [3]</td>
<td>Fatigue</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Skin rash</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Digestive issues [3]</td>
</tr>
<tr>
<td>Basal Cell Carcinoma (BCC)</td>
<td>A prevalent non-melanoma skin cancer with different subtypes like nodular BCC and superficial BCC</td>
<td>Treatment may lead to side effects [4, 5]</td>
<td></td>
</tr>
<tr>
<td>Squamous Cell Carcinoma (SCC)</td>
<td>A common non-melanoma skin cancer</td>
<td>Treatment can be complex, especially if the cancer has spread or if it recurs [4]</td>
<td>Pain</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Scarring</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Changes in skin color [4, 5]</td>
</tr>
<tr>
<td>Advanced Squamous-cell Carcinoma</td>
<td>A form of skin cancer that can be fatal if it recurs or spreads, especially in immunocompromised patients</td>
<td>Despite being common, its treatment is hard and can lead to severe side effects [4]</td>
<td>Severe side effects can occur in immunocompromised patients</td>
</tr>
</tbody>
</table>

Stem cells' capabilities, regulated by signaling pathways and microenvironmental factors, make them ideal candidates for skin regeneration and wound healing. The roles of different types of skin stem cells, including epidermal and mesenchymal stem cells, as well as their contribution to skin repair will be examined [1]. The most common forms of skin cancer that are difficult to treat and have significant side effects are Melanoma, Merkel Cell Carcinoma, and advanced stages of Basal Cell Carcinoma (BCC) and Squamous Cell Carcinoma (SCC) showed in Table 1.

The current applications of stem cell therapy in skin cancer showed in Table 1, highlighting ongoing clinical trials and the market availability of skin cell products [2].

3. Challenges and Expectations

Stem cell therapy encounters various technical and practical challenges, including Tumorigenic Transformation and the complexities of standardizing methods across nations [6, 7]. The intrinsic characteristics of stem cells present potential risks. Their ability to infinitely replicate and produce human cells suitable for transplantation is a double-edged sword. While this trait is valuable for regenerative purposes, unchecked proliferation post-transplantation heightens the risk of tumor formation.

3.1. Tumorigenic Transformation

In recent years, pluripotent stem cells, encompassing both embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), have taken center stage in pioneering medical advancements. Their unparalleled capacity to differentiate into an array of cell types positions them as potential cornerstones in therapeutic applications. However, with these advancements come inherent challenges, notably the propensity of these stem cells to proliferate. Under certain conditions, this proliferation can lead to the formation of tumors, a concern referred to as tumorigenicity [8-10].

One of the distinguishing features of stem cells is their self-renewal capability, setting them apart from other cellular entities. While this property holds invaluable potential for regenerative medicine,
it also acts as a double-edged sword. In instances where stem cells aren't directed accurately during the differentiation process, or if they sustain their pluripotent nature, there's potential for unregulated growth leading to the emergence of teratomas or other tumor varieties. Recent studies have shed light on the genetic commonalities between pluripotent stem cells and certain cancers, attributing these similarities to the influence of genes such as Myc, Nanog, Oct4, and Sox2. This discovery underscores the necessity of meticulous cell control to ensure the safety and efficacy of therapeutic applications [11].

Several factors play pivotal roles in influencing the tumorigenic potential of pluripotent stem cells. The origin and type of these cells, for instance, can critically determine their tumorigenic tendencies. It's been observed that ESCs, due to their intrinsic differentiation capacity, carry a heightened risk of tumorigenicity compared to their adult stem cell counterparts [12]. Furthermore, the external environment and conditions under which these cells are cultured can have profound implications for their genomic stability. Factors such as culture mediums, growth supplements, and even genetic engineering tools like CRISPR-Cas9, if not used judiciously, might inadvertently introduce mutations, pushing these cells closer to a tumorigenic state. Additionally, the intricate relationship between transplanted stem cells and the host's body adds another layer of complexity. The host's immune system, as well as the tissue microenvironment, can significantly influence the behavior, integration, and differentiation trajectory of these stem cells.

Given the immense therapeutic promise pluripotent stem cells hold, researchers have been ardently working to devise strategies aimed at curbing their tumorigenic tendencies. A key aspect of this endeavor involves refining the gene delivery vectors central to the iPSC reprogramming process, thereby reducing the risk of unwanted genomic disruptions [12]. Moreover, by probing into the shared gene expression networks between cancers and pluripotent stem cells, researchers are keen on deciphering and subsequently neutralizing factors predisposing stem cells to tumorigenicity [11]. The advent of advanced genetic monitoring tools, particularly single-cell sequencing, offers a means to rigorously evaluate stem cells prior to transplantation, ensuring their genomic integrity. Lastly, preconditioning stem cells to ensure their correct differentiation post-transplantation has been highlighted as a prospective strategy to mitigate the risk of tumor formation.

3.2. Standardization in Stem Cell Therapies

In the progressive domain of regenerative medicine, stem cell therapies have firmly established themselves as a promising frontier, introducing transformative prospects to global healthcare paradigms. As this promising horizon expands, it concurrently brings to light significant complexities that pertain to standardization.

The momentum of progress in stem cell therapies is unequivocally redefining therapeutic avenues, especially for conditions once considered untreatable. However, this accelerated pace of development juxtaposes against glaring gaps in the adoption of standardized protocols and regulations. Notably, the lack of uniformity can result in inconsistent clinical outcomes, thereby introducing potential vulnerabilities in both the efficacy and safety of therapeutic interventions [6].

Diverse methodologies exist in the sphere of stem cell research, notably in the protocols for extraction, purification, differentiation, and subsequent transplantation. Such heterogeneity does not merely raise concerns about the reproducibility of research findings but also amplifies potential risks inherent to stem cell therapies. With multifarious techniques proliferating in laboratories and institutions across the globe, a clear inconsistency emerges in therapeutic outcomes, subsequently diluting overall therapeutic efficacy [13].

Amid these challenges, the landscape of stem cell research is further intricately woven with ethical and regulatory dimensions. A tapestry of regulations is evident globally, with countries manifesting a spectrum of regulatory stances ranging from permissiveness to strict oversight. Socio-cultural factors, alongside ethical deliberations deeply entrenched in regional religious and philosophical tenets, contribute significantly to shaping these regulatory landscapes. The guidelines articulated by the International Society for Stem Cell Research (ISSCR) emphasize a cautionary approach against
any premature commercial endeavors in stem cell interventions, advocating rigor in ethical, scientific, and regulatory frameworks [14].

Quality assurance emerges as an irrefutable cornerstone in the realm of stem cell therapies. Yet, the quest for establishing universally recognized benchmarks for quality assurance remains ongoing. Analytical explorations have persistently spotlighted the centrality of quality in ensuring the efficacy of stem cell-based interventions. Furthermore, the introduction of "SMART" stem cells in gene therapy has ushered in an era necessitating stringent adherence to FDA regulations, thereby reiterating the indispensable nature of quality benchmarks [13].

Nevertheless, amidst the multifaceted challenges, collaborative endeavors provide a beacon of optimism. International stem cell research consortia are progressively bridging existing lacunae, fostering harmonized protocols, and ensuring mutual regulatory recognition. Exemplifying this trend is China's proactive engagement in fostering international collaborations to cultivate standards that cater to clinical translation, spanning approved stem cell products, clinical trials, ethical discourses, and ISO standards, among others. Such endeavors, substantially supported by institutions like the Chinese Academy of Sciences and the National Key R&D Program, accentuate the significance of collaborative strategies in surmounting barriers to standardization [15, 16].

The potential of stem cell therapies illuminates the path forward for myriad patients globally. To optimize this potential, the entwined complexities of standardization need unraveling. Through collaborative ventures, comprehensive frameworks, and an integrated approach to regulatory deliberations, stem cell therapies can be poised to deliver their optimal therapeutic promise. As we stand at the cusp of this medical renaissance, a globally unified vision is pivotal to propel stem cell treatments into their brightest future.

4. Potential Solutions

Stem cell therapy's transformative capabilities in reshaping the therapeutic landscape cannot be denied. While this groundbreaking approach to medicine promises a new chapter in healing and treatment, it is not without its challenges, especially in the realms of efficacy, safety, and standardization. However, advanced monitoring and global collaboration are emerging as key solutions to these challenges. Monitoring the activity of transplanted stem cells is integral to the optimization of therapeutic outcomes. A key study underscored this by examining the long-term ex vivo expansion of functional mouse hematopoietic stem cells, investigating the nuances of culture conditions and cytokines. A noteworthy finding from this study was that polyvinyl alcohol could potentially replace serum albumin for hematopoietic stem cell expansion. This expansion showcased the cells' ability to engraft in non-conditioned recipients, demonstrating the benefits of refined ex vivo monitoring techniques [17]. Moreover, the monitoring of post-transplant treatments in multiple myeloma patients indicates the influence of different therapeutic regimens on transplantation outcomes. Such rigorous monitoring ensures the tailoring of treatments to specific patient needs, paving the way for highly individualized therapeutic strategies [18].

On the other hand, the accelerated pace of global investment in stem cell research emphasizes the need for a united front. International collaborations can set a consistent research direction, making way for uniform and systematic therapeutic approaches. Case in point: guidelines for solid organ transplantation have emerged which address post-transplant lymphoproliferative disorders and their relationship with Epstein-Barr virus infections. These guidelines, born out of global consensus, ensure consistent preventive measures, diagnostics, and treatments, reducing potential risks. The guidelines further accentuate the value of patient-focused immunotherapies and groundbreaking virological markers, optimizing the health outcomes for transplant recipients [19]. Diseases such as sickle cell anemia illustrate the vast therapeutic potential of stem cell transplantation. Collaborative global research efforts are shedding light on promising treatments like allogeneic transplantation and gene therapy, both holding promise for a potential cure. These collaborative endeavors ensure that research aligns globally, enhancing the potential benefits of stem cell treatments [20]. Additionally,
engineering advancements in stem cell treatments have been catalyzed by international collaborations. The development and application of artificial extracellular matrix scaffolds to bolster the maturation of human stem cell-derived neurons exemplify the leaps that can be achieved in regenerative medicine when global scientific communities come together [21]. In conclusion, as we delve deeper into the intricacies of stem cell therapy, it becomes evident that a symbiotic relationship between advanced monitoring and global collaborations is crucial. Such a synergy promises to harness the full potential of stem cell therapy, pushing the boundaries of medical science.

5. Future Perspectives and Research Directions

Skin cancer, a leading dermatological malaise of our times, remains at the forefront of medical research due to its increasing prevalence and intricate nature. As we delve into novel therapeutic frontiers, stem cell therapy emerges as a potential game-changer in the battle against this multifaceted disease. This article seeks to explore the future of stem cell therapy in skin cancer treatment, emphasizing potential research areas, upcoming technologies, and the integration of artificial intelligence (AI) and machine learning in predicting stem cell behavior.

Stem cells have, for decades, showcased promise in skin regeneration, therapy, and the treatment of various skin diseases. Mesenchymal stem cells (MSCs), in particular, have demonstrated significant potential in wound healing, underscoring their versatility and therapeutic capability [1]. Another notable entrant in this domain is induced pluripotent stem cells (iPSCs), whose applications may well revolutionize the treatment landscape for genetic skin disorders [1]. However, Cancer Stem Cells (CSCs) present challenges for cancer therapies, warranting extensive research to unravel their complexities [1].

One of the striking developments in dermatological stem cell therapy has been the exploration of mesenchymal stem cells (MSCs) to treat radiation-induced skin injuries (RISI). These cells, renowned for their anti-inflammatory, antioxidant, and immunomodulatory effects, offer hope against the destructive mechanisms of RISI, notably oxidative stress and inflammation [22]. MSC variants, such as Adipose-Derived Mesenchymal Stem Cells (ADMSCs), Bone Marrow Mesenchymal Stem Cells (BMMSCs), and Umbilical Cord Mesenchymal Stem Cells (UCMSCs), are currently under investigation for their effectiveness in promoting tissue repair and minimizing scar formation post-radiation [22].

While the role of stem cells in skin cancer treatment is progressively gaining traction, it’s imperative to position this within the broader context of advancing cancer therapies. This encompasses targeted drug therapies, ablation procedures, the exciting realm of nanoparticles, and the potential therapeutic efficacy of natural antioxidants, including curcumin, berberine, and quercetin [23]. The transformative potential of stem cells, especially when juxtaposed against these evolving therapies, elucidates the significance of a multi-pronged approach in combating skin cancer.

In our rapidly digitalizing world, the integration of AI and machine learning in medical research presents unprecedented opportunities. Predicting stem cell behavior, a challenging task historically reliant on trial and error, stands to benefit profoundly from AI integration. Algorithms, fed with vast datasets of stem cell reactions under varied conditions, can potentially predict stem cell differentiation patterns, optimize culture conditions, and even pinpoint potential aberrations in stem cell batches. These predictive analytics, bolstered by machine learning’s continual refining processes, can lead to more predictable and consistent outcomes in stem cell-based skin cancer therapies.

As the scientific community continues its relentless pursuit of effective skin cancer therapies, the path ahead is lined with challenges, ethics being primary among them. The use of stem cells, though brimming with potential, remains under scrutiny, necessitating stringent regulatory guidelines and quality control measures [24]. Moreover, the integration of technology in this field, while promising, mandates rigorous validation processes to ensure the safety and effectiveness of AI-backed interventions.
Nevertheless, the horizon is optimistic. Stem cell therapy, bolstered by technological advancements and interdisciplinary research collaborations, is poised to offer novel solutions in the battle against skin cancer. Through continuous research, meticulous validation, and unwavering commitment to ethics and safety, the global scientific community is paving the way for a brighter, more hopeful future for skin cancer patients worldwide.

6. Conclusion

This review summarizes the various facets of stem cell therapy in skin cancer. Our findings highlight the potential benefits of this approach, including the opportunity for improved patient outcomes and personalized therapy. However, these advantages must be weighed against the ethical, practical, and technical challenges that remain. Future directions should focus on overcoming these limitations, establishing standardized guidelines, and facilitating global cooperation in research and implementation. Stem cell therapies offer a beacon of hope for countless patients worldwide. However, for these therapies to achieve their full potential, standardization is imperative. Collaborative efforts, comprehensive guidelines, and a unified approach to regulatory considerations can pave the way for a brighter, more consistent future in stem cell therapies. The world stands on the brink of a medical revolution, and with concerted efforts, the dream of universally standardized stem cell treatments can become a reality.

References


