Unveiling COVID-19 Vaccination: Strategies, Challenges and Future Preparedness

Xuemei Qu 1, Yawen Zhang 2,*

1 Malden Catholic High School, Boston, United States
2 International Department, Affiliated High School of South China Normal University, Guangzhou, China

* Corresponding Author Email: zhangyw.jessie2022@gdhfi.com

Abstract. Throughout history, pandemics have had a profound and far-reaching impact on the society of any country and can be so severe that they reshape the course of nations and challenge human resilience. Against the somber backdrop of these crises, vaccines have emerged as beacons of hope and critical tools to curb the relentless spread of infectious diseases. In particular, the recent global response to the COVID-19 pandemic has demonstrated the critical role of vaccines in safeguarding the health of public people and stopping the spread of a new highly infectious virus. In this article, we will explore the crucial interplay between vaccination and pandemics, from the different types of vaccines to a focus on the far-reaching significance of vaccines in addressing the complexity of the COVID-19 crisis and recognizing that vaccines can not only curb the spread of the virus but also shape the trajectory of our shared global future.

Keywords: Pandemics, COVID-19, Vaccine development, mRNA vaccines, Vector-based vaccines, vaccine approval, Supply chain, Booster doses, Global cooperation, public health organizations.

1. Introduction

Pandemics have historically had a significant and far-reaching impact on society in every nation, and they can be so severe as to alter the path of entire countries and test people's capacity for resilience. Vaccines have arisen as rays of hope and vital tools to stop the persistent spread of infectious diseases against the dismal backdrop of these disasters. Notably, the recent international reaction to the COVID-19 pandemic has shown vaccines' crucial role in protecting the public's health and halting the spread of a new, highly contagious virus. With a focus on the broad significance of vaccines in addressing the complexity of the COVID-19 crisis and an understanding that vaccines can not only stop the spread of the virus but also influence the trajectory of our shared global future, we will explore the crucial interaction between vaccination and pandemics in this article.

2. Vaccine Development, Compare Vaccines between Pfizer-BioNTech, Moderna, AstraZeneca and Johnson & Johnson

2.1. mRNA Type Vaccine (Pfizer, Moderna) and Vector-based Type Vaccines (Asrea Zeneca, JJ)

During COVID-19, one of the critical breakthroughs in vaccine development has been using innovative technologies such as mRNA. These vaccines, like Pfizer-BioNTech and Moderna, introduce a small piece of the virus's genetic material into the body, prompting the immune system to recognize and produce antibodies against the virus. Messenger RNA is a type of RNA that is necessary for protein production. Once cells finish making a protein, they quickly break down the mRNA [1]. When they get into the bodies, mRNA vaccines will leave a small piece of protein, which is found in the viral envelope, in order to let cells create virus protein. So, the immune system would recognize this protein and create the unique protein to help the human body get affected again.

On the other hand, vector-based vaccines, such as AstraZeneca and Johnson & Johnson, use harmless viral vectors to deliver the viral genetic material, again triggering an immune response.
These diverse approaches highlight the adaptability of science in the face of a global crisis, allowing for the rapid development of multiple vaccine options to combat COVID-19.

2.2. Unprecedented Collaboration, Safety, and Efficacy on Covid-19 Vaccine

Moreover, the remarkable speed at which these vaccines were developed can be attributed to the unprecedented collaboration between scientists, pharmaceutical companies, and governments worldwide. The urgency of the pandemic led to a shared focus on advancements, with researchers from various fields working tirelessly to accelerate the vaccine development process, like BioNTech, Fosun Pharma, and Pfizer. BioNTech "contributes multiple mRNA vaccine candidates," and Pfizer "contributes its global vaccine clinical research and development"—regulatory, manufacturing, and distribution infrastructure and capabilities [2]. The global scientific community came together, sharing data and findings openly, which expedited the research process. This unparalleled level of collaboration and information-sharing was instrumental in the swift development and distribution of vaccines. However, this rapid development also raised concerns about the balance between speed, safety, and efficacy. The clinical modelling shows increased blood viscosity in healthy COVID-19 vaccine recipients and recipient with underlying metabolic syndrome [3]. The issue of vaccine effection on human blood is still a concern for whether it can help people remain healthy. Also, this is still a question for scientists today. While the urgency of the pandemic demanded expedited processes, scientists and regulatory bodies were keenly aware of the need to maintain rigorous safety standards and ensure vaccine efficacy. Extensive clinical trials were conducted to assess the safety and effectiveness of these vaccines, with data subjected to thorough scrutiny. This commitment to maintaining high safety and efficacy standards reassured the public and healthcare professionals, building trust in the vaccines' reliability. Balancing speed with safety and efficacy remained a top priority, ensuring that the vaccines brought hope and protection to millions while maintaining the highest standards of scientific rigor.

2.3. Back into Community Vaccine Approval and Distribution

The vaccine approval process involves rigorous evaluation by regulatory bodies such as the Food and Drug Administration (FDA) in the United States or the European Medicines Agency (EMA) in the European Union [4]. These agencies assess the safety and efficacy data generated during clinical trials, ensuring that the vaccines meet established standards. Emergency use authorization (EUA) mechanisms have been invoked to expedite the availability of vaccines in times of crisis. While EUAs allow for quicker deployment, they still require substantial evidence of safety and efficacy, intending to safeguard public health. Governments have played a central role in coordinating the distribution of vaccines within their borders, determining prioritization and allocation strategies based on risk factors and population needs.

The equitable distribution of vaccines has presented considerable challenges on the global stage. The chance that each country will be able to get vaccines has always been difficult, with high-income countries securing the majority of vaccine doses, leaving low- and middle-income nations at a disadvantage. These factors prevent them from getting the vaccine the very first time. In order to avoid this phenomenon, international organizations like the World Health Organization (WHO) have played a vital role in addressing this imbalance. The COVAX initiative, co-led by the WHO, aims to ensure equitable vaccine access by distributing doses to countries based on population size and need rather than financial resources. Form a big gap between countries with robust healthcare systems and those with limited vaccine access. However, logistical challenges, vaccine production limitations, and export restrictions have posed significant hurdles to achieving global vaccine equity.

Furthermore, ensuring effective distribution requires overcoming not only logistical challenges but also vaccine hesitancy and misinformation issues, which can hinder vaccination efforts domestically and abroad. International organizations have worked to combat misinformation and build public trust in vaccines, emphasizing the importance of global vaccination to halt the spread of the virus.
Approving and distributing vaccines is multifaceted, with government authorizations for emergency use and distribution strategies within individual countries. Global international cooperation and the active collaboration of WHO in promoting equitable access to vaccines have accelerated the speed of vaccine production globally and complex issues such as misinformation.

3. People’s Concerns and Misinformation on Vaccine Specifically to Covid-19

3.1. Safety Concerns or Misinformation

It would be tough for citizens not to be concerned about the uncertainty the new vaccine will bring them. Based on research, the scientists found out that people are concerned about multiple things, including possible side effects like losing smell or taste. (59%), lack of trust in the government to ensure the vaccines’ safety and effectiveness (55%), and concerns that the vaccine is too new (53%) [5]. To illustrate, firstly, people think the vaccine developed so fast that researchers might lost some important details or problems during the development of the vaccine. Compared to the other vaccines, they have spent almost four years to put into use on human bodies. If people get vaccinated to prevent Covid-19, they might have side effects. However, people must notice that these vaccines did not come out of nowhere; they came out of years of research and technological advances [5]. The vaccine was developed in such a short period not because the process was sloppy but because of the accumulated experience of developing other series of viruses and the urgency of the virus's rapid spread.

3.2. The Groups of Anti-Vaccine Movements on Covid-19 Vaccine Acceptance Affect People

People think the government and other safety agencies are giving conflicting messages about the vaccine’s safety for COVID-19; in an interview on March 8, 2020, Fauci said, “There is no reason to be walking around with a mask.” However, by April 3, the CDC updated its previous advice. It recommended wearing face coverings “in public settings around people outside their household, especially when social distancing measures are difficult to maintain.” [5]. Fortunately, some experts have explained to us that the reason for the government’s conflicting information is due to a time lag in disseminating information. However, the virus constantly mutates, and the targeted vaccine may change.

People are also concerned about the uncertainty about the vaccine’s side effects, which some people believe will last a long time and affect an individual’s everyday life. However, in clinical trial data presented to the FDA by Pfizer, the vaccine was well-tolerated in approximately 44,000 participants with no serious safety concerns. Side effects were mild, including fatigue and headache in fewer than 3% of participants [5]. Moreover, research shows that none of the vaccine’s side effects have lasted longer than two months.

3.3. People’s Concerns on Education and Outreach

Through various data and feedback, we can see that people's awareness of vaccines is still insufficient. In the event of an epidemic like COVID-19 in the future, the government and relevant departments should strengthen publicity and update the frequency of the latest information. At the same time, the Education Bureau should raise the importance of awareness of the epidemic, teaching children the importance of the vaccine and the way to prevent pandemics. As WHO mentioned, the factsheet also showed the negative impact of COVID-19 on the psychosocial well-being of children, which may further impact children's lifestyle and behaviours [6]. However, during this time, schools still changed to online teaching and did not give up continuity of teaching. Also, after the pandemic, everyone is trying hard to get life back to a regular, healthier life for the generations.
4. The Transportation, Conservation Problems that Covid-19 Vaccine Faced

4.1. High Cold Chain Requirements to Store and Transport Vacancies

In developing a new vaccine, people must keep track of the changing speed and power of the virus to mutate and adjust the vaccine. The latest vaccine is not immediately used in humans and has to undergo a series of tests on mice and other animals to ensure its safety before it can be widely used.

4.2. Supply Chain Disruptions in Some Countries

More complex tasks will arise in preserving and transporting the vaccine. The vaccine is a less lethal antigen developed using a virus, so vaccines must be fantastic to work correctly. This makes portable cold-chain equipment a must. Luckily, innovations in vaccine transportation, including delivery by drone, make it easier to transport vaccines and decrease some of the risks to the health workers and the vaccines they carry [7].

4.3. Give Ideas to Reach Remote Areas

People are still concerned because illness prevalence might increase with frailty. It is difficult for people to receive medical care and immunizations in locations with weak or nonexistent health systems. For instance, the world's greatest measles outbreak is now occurring in the Democratic Republic of the Congo. The result of logistical problems is primarily with administering immunizations to people. Access to vaccines and other medical interventions is more work due to the ongoing Ebola outbreak, which significantly strains the country's health response system [7].

5. Prioritization and Digital ID for COVID-19 Vaccine

5.1. Ensuring Equity: Prioritizing High-Risk Groups and Healthcare Workers

Determining the order in which individuals should receive the COVID-19 vaccine has been a topic of consideration and concern for the public, involving public health and social equity considerations. An essential aspect of this process is distributing a limited number of vaccine doses to different populations. Lessons learned from previous pandemic experiences and the most fundamental principle is protecting those at the highest risk of infection and death from serious illness. In many countries, most of this population refers to frontline healthcare workers, including doctors, nurses, and other hospital staff, who are the first to be prioritized for vaccination. This prioritization recognizes their direct contact with COVID-19 patients and their role in sustaining the healthcare system's ability to respond to a pandemic. Vaccinating healthcare workers would protect these vital professionals, and the entire healthcare infrastructure could better respond to the current crisis.

Simultaneously, high-risk populations, such as older people and individuals with underlying health conditions, have also been given priority access to vaccines. These groups are more susceptible to severe illness or complications if they contract the virus, so vaccinating them early in the distribution process is crucial. Additionally, including these groups in the initial phases of vaccination helps reduce the burden on healthcare facilities by lowering the number of COVID-19 hospitalizations.

To address the challenge of limited vaccine doses, governments and health authorities have implemented strategies to ensure fairness and maximize the impact of each dose. One strategy involves a phased approach, where vaccination is rolled out in stages, beginning with the highest-priority groups and gradually expanding to the general population as more doses become available. This approach aims to provide immediate protection to those most vulnerable while maintaining a sense of fairness in the distribution process. Another strategy involves targeting specific geographic areas or communities disproportionately affected by the pandemic. The impact of COVID-19 has not been uniform across all regions and populations. Therefore, vaccines are allocated to areas with higher infection rates or limited healthcare resources to mitigate disparities. Balancing the needs of frontline workers, high-risk populations, and the general public has required careful planning and
ethical considerations. Strategies like phased vaccination and targeted allocation have been implemented to ensure that limited vaccine doses are distributed fairly and effectively, ultimately contributing to the collective effort to control the spread of the virus.

5.2. Vaccination Cards and Digital Health Tracking: Balancing Safety and Privacy

Vaccination cards and digital health tracking have emerged as tools to promote safe travel and public health surveillance, helping individuals verify their vaccination status and track their health. While these mechanisms play a critical role in reducing the risk of cross-infection and potentially increasing vaccination rates, they also present several challenges and issues.

Vaccination cards typically provide proof of an individual’s COVID-19 vaccination status in the form of a physical document. During an outbreak, these vaccination cards can access specific places, international travel, and, in some cases, even employment. By requiring proof of vaccination, these cards reduce the risk of transmission in crowded places, especially in areas with high vaccine coverage.

Digital health tracking is not limited to vaccination status but allows individuals to monitor their health using smartphone apps or wearable devices. These tools can help users track symptoms, receive alerts about possible COVID-19 exposure, and participate in exposure-tracking efforts. By providing real-time data about users’ health and potential risks, digital health tracking can help detect and contain outbreaks early.

Both approaches require much work, and the main question is balancing the pros and cons. These systems can help reduce cross-infection and help societies return to normal, but they also raise concerns about privacy and data security.

In addition, vaccination cards and digital health tracking systems may inadvertently exacerbate disparities. The fact that only a portion of the population has equal access to smartphones or the Internet may put vulnerable groups at a disadvantage when using these tools. During implementation, ensuring that these systems do not deepen inequalities is crucial. That is why States need to be thoughtful in their implementation and strike the right balance, which is crucial for their successful application and contribution to public health.

6. About Vaccine’s Long-Term Efficacy and Booster

6.1. Monitoring the Duration of Vaccine-Induced Immunity

Now that the impact of the new Coronavirus has begun to fade, people should consider the development of vaccines in the future and how to solve people's confusion and hesitation about vaccines.

First, in order to better control people's reactions after vaccination, a good solution is for the government to establish a relevant App to help people monitor the indicators and adverse reactions after vaccination the whole time to better help people ensure that the side effects of vaccines do not affect their healthy giving them on-time feedback.

6.2. People Are Facing Lots of Challenges in Adapting Covid-19 Vaccines to New Variants

In order to boost the vaccine's duration, research shows that the efficiency of the Within 11 months of follow-up following vaccination, mRNA boosts decreased the prevalence of infection and severe COVID-19, especially among those who were clinically susceptible to severe COVID-19. After the booster, infection resistance declined, raising the likelihood of adverse immunological imprinting. Independent of past infection status, clinical sensitivity to severe COVID-19, and vaccination type, both patterns of protection and imprinting were seen [8].
7. Future Preparation of Improving Cooperation and the Ability of Organization

7.1. Global Cooperation is Very Important in Vaccine Research and Distribution

Significant disparities in the number of people covered by vaccines in countries at different levels of development have led to a widening gap in vaccine equity around the world. Despite the Global Access Fund for Vaccines’ commitment to providing equal vaccines in all countries, underfunding is close to half of the target achieved. This results in a two-track pandemic in which some countries have very high vaccination coverage, and others have shallow vaccination coverage. The result shows the importance of global cooperation in promoting vaccination and testing.

7.2. Role of Public Health Organizations

Relevant departments, such as the World Health Organization, which experienced the coronavirus outbreak, should actively conclude the experience and solve the shortcomings to prepare for future epidemics by following three steps.

First, recruit, train, and prioritize healthcare workers [9]. Experienced healthcare workers are at the heart of the healthcare system. In order to prevent future pandemics, the authorities should prioritize the development of good healthcare workers, which means that healthcare workers need to be provided with the necessary training, vaccinations, and emotional and financial protection to build their confidence and work with them to solve various problems.

Secondly, establish effective surveillance and response systems [9]. For a virus that is constantly mutating and spreading, people need to establish an effective surveillance and notification mechanism to control this virus, which means that if a new mutant strain emerges, the system can quickly report it to the health bureau to effectively and quickly control the spread of the virus.

Finally, Strengthen logistics and supply [9]. Many places around the world are going to be short of necessary resources, such as vaccine masks. If people are prepared to step up the logistics ahead of time, they can help ensure that communities get the vaccines they need and that vaccines are stored at the right temperature and not wasted. Every country's government should save an excellent foundation for the future Because even with the support of government incentives, it took 20 years for the country to build a local base capable of supplying the vast majority of electronic components, auto parts, chemicals, and drug ingredients needed for domestic manufacturing [10]. The country's development of science and technology medical technology has taken a long time. If the government prepares in advance, people can protect the country's people fastest and most effectively in a difficult time of crisis.

8. Conclusion

Every culture has historically seen the profound and far-reaching effects of pandemics, which may be so severe as to change the course of whole nations and put the resilience of their citizens to the test. Vaccines have emerged as beacons of hope and essential tools to curb the ongoing spread of infectious illnesses. Specifically, the recent global response to the COVID-19 pandemic has demonstrated vaccinations' critical role in preserving public health and preventing the spread of a novel, highly infectious virus. People examined the crucial relationship between vaccination and pandemics in this article, focusing on the broad significance of vaccines in addressing the complexity of the COVID-19 crisis and an understanding that vaccines can not only stop the virus’ spread but also affect the trajectory of our shared global future.

Authors Contribution

All the authors contributed equally and their names were listed in alphabetical order.
References


