Health Implications from the HIIT-Caused Alteration of Gut Microbiota

Haotong Zhu

The School of Kinesiology, University of Michigan, Ann Arbor

* Corresponding Author Email: sebazht@umich.edu

Abstract. The term "gut microbiota" usually refers to various microorganisms that coexist in the colon and other regions of the gastrointestinal tract. These microorganisms are necessary for the digestion and breakdown of food, the production of certain vitamins, and the preservation of a strong immune system. Simultaneously, high-intensity interval training (HIIT) has been found to have several ways of changing gut microbiotas. Exploring the relationship between HIIT-caused alterations of gut microbiotas would be beneficial to the guidance of further application of exercise science. This review aims to synthesize current evidence on the impact caused by HIIT on gut microbiota and its potential health implications. HIIT-induced alterations in the gut microbiota may help prevent and treat illnesses including obesity, psychological issues, and metabolism. As a potential regulator of the makeup of the gut microbiota, HIIT appears to have important health implications. For the purpose of creating novel techniques to advance general health and resist a variety of potential risks to health, understanding the complex interaction between HIIT and the gut microbiota holds promise.

Keywords: High-intensity interval training; Gut microbiota; Depression; Aging; Obesity.

1. Introduction

The varied ecology of microorganisms found in the human gastrointestinal tract is referred to as the "gut microbiota" in this context. This complex microbial community has become an important component of preserving human health and has been linked to several human functions such as obesity, psychological disorders, and the aging process. Exercise has emerged as a prominent lifestyle component because of its capacity to modify the gut microbiota and, consequently, impact health outcomes. HIIT, which entails rapid bursts of intense exercise followed by quick rest intervals, has become recognized as a particularly efficient kind of exercise for enhancing metabolic health, cardiovascular fitness, and overall physical performance.

In addition to its known health advantages, HIIT has drawn interest for its ability to change the gut microbiota’s profile or composition. This has raised concerns about how HIIT, gut microbiota, and health consequences interact. Regarding how HIIT affects the gut microbiota and what its possible consequences for health implications are, this in-depth review attempts to give a complete analysis of the body of available evidence. This paper will examine the processes underlying HIIT-caused changes in the gut microbiota as we explore the three major topics of metabolism, obesity, and anxiety and depression. After reviewing all the interplays, we would have a better way of managing and preventing specific diseases and further extending the exercise knowledge.

2. Gut Microbiota and HIIT

2.1. Gut Microbiota

Due to its substantial impact on human health, the human gut microbiota—a diverse and dynamic population of bacteria living in the gastrointestinal tract—has attracted a lot of interest in recent years. The gut microbiota is a symbiotic ecosystem that has been recognized as essential for many physiological processes, from metabolism and digestion to immunological control and mental health [1]. Genetics, nutrition, age, and exposure to the environment are only a few of the variables that have an impact on the composition, diversity, and richness of the gut microbiota. Emerging research,
Highlights in Science, Engineering and Technology
Volume 74 (2023)

supported by a wealth of scholarly-reviewed studies, has illuminated the multifaceted associations between the gut microbiota and numerous aspects of human health. This comprehensive review provides an integrative perspective on the capability of the gut microbiota on health implications and the mechanisms involved. It explores the clinical implications of the gut microbiota in the context of different diseases and health conditions such as obesity, metabolism, and psychological disorders [1].

HIIT has emerged as a prominent and effective exercise regimen that has revolutionized the fitness industry and captured the interest of both researchers and fitness enthusiasts alike. HIIT is characterized by quick bursts of intense exercise separated by periods of lower-intensity rest or recuperation. This approach challenges traditional notions of exercise duration and intensity, offering a time-efficient yet highly effective means of improving cardiovascular fitness, metabolic health, and overall well-being. HIIT has been demonstrated to boost fat loss, insulin sensitivity, and cardiovascular fitness [2, 3].

2.2. Gut Microbiota and Exercise

The composition and function of the gut microbiota are becoming recognized more and more as being modulated by exercise, which has implications for overall health and well-being. In this section, the impacts of various exercise modalities, such as aerobic exercise, resistance training, and HIIT, are examined as they relate to the association between exercise and gut microbiota.

2.2.1 Aerobic Exercise

Aerobic exercise, characterized by sustained moderate-intensity activities, has been extensively studied for its impact on gut microbiota. Several review articles provide insights into the subject. Research has shown that aerobic exercise can promote microbial diversity in the gut [4]. This diversity is associated with a healthier gut and improved metabolic outcomes. Additionally, an increased abundance of beneficial taxa like Bifidobacterium and Faecalibacterium has been observed following aerobic exercise [5].

2.2.2 Resistance Training

Resistance training, which involves the use of resistance or weights to build muscle strength, has been less studied in terms of its effects on gut microbiota compared to aerobic exercise. However, emerging research suggests that resistance training may also influence gut microbial composition. One review article suggests that resistance training can contribute to favorable changes in gut microbiota composition, potentially impacting metabolic health. These effects may be mediated by exercise-induced alterations in muscle mass and metabolism.

2.2.3 HIIT

HIIT is gaining attention for its remarkable fitness and health benefits. While research on HIIT’s influence on gut microbiota is still relatively limited, some studies and review articles shed light on this topic. Recent research by Allen et al [6] demonstrated that in both lean and obese people, HIIT can change the gut microbiota profile. The study found increased diversity and shifts in specific taxa following HIIT. These changes were associated with improved metabolic outcomes.

2.3. Mechanisms of Exercise-Induced Gut Microbiota Changes

The mechanisms underlying exercise-induced alterations in gut microbiota are complex and multifaceted. Exercise can influence gut microbiota through various pathways, including three main changes. The first important impact is Metabolic Changes. Exercise, regardless of modality, can lead to metabolic improvements, such as enhanced insulin sensitivity and reduced inflammation. These metabolic shifts create a more favorable environment for beneficial gut bacteria [4]. Plus, Immunomodulation could be affected accordingly since the immune system, which is a key factor in determining the makeup of the gut microbiota, can be modulated by exercise. Research remains to be conducted on how gut bacteria and exercise-induced immune responses interact [4]. Last, the exercise would function in the synthesis or formation of Short-Chain Fatty Acids (SCFAs). Exercise,
including HIIT, may promote the production of SCFAs in the gut. SCFAs are metabolic byproducts of microbial fermentation of dietary fiber and have important implications for gut health [5]. Therefore, exercise, including aerobic exercise, resistance training, and HIIT, has the ability to affect the makeup and diversity of the gut microbiome. The multiple advantages of regular exercises including HIIT may be attributed to these exercise-induced alterations in gut microbiota.

2.4. HIIT and Gut Microbiota

Recently HIIT has gained attention as a time-efficient and potent exercise regimen. HIIT is neither defined as aerobic nor anaerobic exercise as it usually switches between these two forms. Compared to other training modalities, research on the precise effects of HIIT on gut microbiota is rather scant, but recent studies offer important new information.

A study by Cronin et al. tried to explore how exercise affects the composition of the gut microbiota in sedentary persons [7]. The results disclosed that exercise treatments considerably altered the variety of gut microorganisms, with an obvious improvement in helpful taxa and a decrease in potentially dangerous bacteria. These alterations were associated with improved metabolic markers. Another study by Barton and colleagues highlighted the contribution of exercise-induced changes in gut microbiota to optimizing metabolic health [5]. The study highlighted the positive association between exercise, HIIT, and the synthesis of SCFAs. They have been linked to reduced inflammation and enhanced gut barrier function. In addition, HIIT has been associated with strengthening the gut barrier, preventing the leakage of harmful substances from the gut into the bloodstream. By preventing the admission of potentially hazardous microorganisms, this barrier function may have an impact on the makeup of the gut microbiota.

From the other perspective, the alteration of gut microbiota resulting from HIIT may benefit in prevention and treatment of obesity. Numerous studies have demonstrated that HIIT can be an effective strategy for weight management and reducing obesity [8, 9]. HIIT is well known for its capacity to raise metabolic rate, enhance insulin sensitivity, and encourage fat loss [10]. According to recent studies, people with obesity have different gut microbiota compositions than people who are healthy weights. Dysbiosis has been defined as an imbalance in gut microbiota, associated with obesity for so long [11]. Changes in metabolic activity, functional genes, and microbiome composition are seen between obese and lean individuals, suggesting that the gut microbiota contributes to these phenotypes [12]. For this reason, the following exercise recommendations for obesity may be successfully developed if more studies could examine how HIIT possibly impacts the composition and variety of gut microbiota.

The final health implication would involve mental health or psychological disorders. In other words, Growing research points to a connection between the overall composition of the gut microbiota and mental health. Dysbiosis, or imbalances in the gut microbiota, has been correlated with depression, anxiety, and mental health conditions [13]. Several potential mechanisms have been proposed through which changes in gut microbiota may impact mental health, including the production of neuroactive compounds, regulation of inflammation, and modulation of the gut-brain axis. HIIT, an increasingly popular exercise, has been found to alter the profile of the gut microbiota based on the sections above. HIIT’s impact resulting from the gut microbiome may benefit its effects on psychological issues. For example, an increasing abundance of proinflammatory species and a decreased abundance of bacteria that produce SCFA may be indicators of anxiety and depressive disorders [14]. Thus, the intervention from exercises like HIIT may induce a significant improvement in psychological disorders.

3. Conclusion

The complex interactions between HIIT, gut microbiota, and their combined effects on human health have drawn increasing attention. The volume of data included in this study underscores the significant effects on health and wellbeing of HIIT-induced changes to the gut microbiota.
intricate relationship between HIIT and the gut microbiota has been clarified by research. It is evident that HIIT may affect the variety and composition of gut microbial populations, which can therefore have an enormous effect on physiological, metabolic, and psychological functions. For future studies, the evidence and data collected should focus more on HIIT-exclusive study, dietary reactions, and potential Microbiota Modulation Strategies, ensuring the establishment of a comprehensive system of knowledge about exercise and gut microbiota.

References


