Advancements And Applications of Field-Effect Transistors in Modern Electronics

Houxuan Tan *
Department of EEE, University college of London, London, WC1E 6BT, UK
* Corresponding Author Email: zczlht4@ucl.ac.uk

Abstract. Field-Effect Transistors (FETs) have evolved as fundamental semiconductor devices pivotal to modern electronics. This paper provides an extensive overview of FETs, encompassing their definition, classification, and historical development. FETs, such as Junction Field-Effect Transistors (JFETs) and Metal-Oxide-Semiconductor Field-Effect Transistors (MOSFETs), are explained, highlighting their distinct characteristics and applications. Additionally, innovative FET variants like Piezoelectric Field-Effect Transistors (PiezoFETs) and High Electron Mobility Transistors (HEMTs) are explored for their unique attributes and applications. The paper underscores the critical role FETs play in diverse sectors, including low-power digital circuits, RF applications, biosensors, and flexible electronics. It emphasizes their contributions to achieving ultra-low power consumption, rapid analysis, and real-time, label-free diagnostics. The collaborative efforts of experts from various disciplines are emphasized as essential for optimizing FET-based biosensors. Furthermore, the paper emphasizes the exciting potential of graphene-based FETs (G-FETs) in Bioelectronics and their ability to revolutionize point-of-care diagnostics. G-FETs’ scalability, low-cost manufacturing, and superior properties make them a promising choice for future healthcare applications.

Keywords: Field-Effect Transistors (FETs), Semiconductor Technology, Biosensors, Graphene-based FETs (G-FETs).

1. Introduction

In the contemporary era, owing to the relentless advancement in semiconductor technology, transistors have emerged as increasingly indispensable and convenient components, particularly in the realm of field-effect transistors (FETs). FETs play a pivotal role in regulating the flow of current within semiconductors [1]. These FET devices, be they junction field-effect transistors (JFETs) or metal-oxide-semiconductor field-effect transistors (MOSFETs), feature three key terminals: source, gate, and drain. Through the manipulation of voltage applied to the gate, FETs exert precise control over the conductivity between the drain and source. Modern digital integrated circuit technology heavily relies on FETs, which are the cornerstone of the contemporary technology known as CMOS (Complementary Metal-Oxide-Semiconductor).

This article aims to delve into the comprehensive understanding and categorization of FETs, while also providing insight into their historical development. To underscore the significance of FETs, this article will elucidate their practical applications through the analysis of three distinct scenarios: chemical sensors capable of detecting various chemicals and reactions, low-power dynamic circuits, and tunnel FETs, all of which are both conveniently accessible and profoundly consequential. However, it is essential to acknowledge that the utilization of FETs is not devoid of challenges. Although transistor technology has not yet reached its full maturity, these challenges should not deter us. In fact, once these obstacles are overcome, transistors are poised to leave an indelible mark on our lives. These hurdles will inevitably be surmounted through the continuous development of technology and will undoubtedly find their applications in the future.
2. Definition and classification of FETs

2.1. Definition of field-effect transistor

A Field-Effect Transistor (FET) is a fundamental semiconductor device used in electronic circuits to control the flow of electrical current. It operates based on the modulation of the conductivity of a semiconductor material, typically silicon, by applying an external electric field. FETs have three essential terminals: source, gate, and drain [2].

It consists of three primary terminals: Source (S): The source terminal is the point from which current enters the FET. Electrons or charge carriers flow from the source to the other terminal, the drain. Gate (G): The gate terminal serves as the control element of the FET. By applying a voltage to the gate terminal, the conductivity of the semiconductor material between the source and drain can be modulated, allowing precise control of the current flow. Drain (D): The drain terminal is the point where current exits the FET. Charge carriers exit the device through the drain terminal [3]. The figure of a Field-Effect Transistor is shown in figure 1 [4].

2.2. Classification of field-effect transistors

1. Junction Field-Effect Transistor (JFET): JFET features a gate-source junction that is reverse-biased, forming a PN junction. By applying a voltage to the gate, the flow of current between the source and drain is controlled. Variations in the electric field within the semiconductor material alter the carrier concentration, thus regulating the current. JFETs are typically employed in low-frequency and high-input impedance applications [7]. They exhibit high input impedance and low noise but have relatively poorer performance in high-frequency applications.

2. Metal-Oxide-Semiconductor Field-Effect Transistor (MOSFET): MOSFETs have a gate that is isolated from the semiconductor material by an insulating layer, typically silicon dioxide. This forms a capacitance between the gate and the semiconductor material. By applying a voltage to the gate, the
electric field between the gate and the semiconductor is altered, controlling the current flow between the source and drain. MOSFETs are crucial components in modern integrated circuits due to their low power consumption, high performance, and scalability. They find widespread use in microprocessors, memory devices, and various digital circuits.

3. Piezoelectric Field-Effect Transistor (PiezoFET): PiezoFET is a novel variant of FET that employs piezoelectric materials to control current flow. When mechanical strain (pressure or stress) is applied, the lattice structure of the piezoelectric material changes, modulating the flow of electrons [8]. PiezoFETs are used for sensing strain or pressure and find applications in biomedical sensing, environmental monitoring, and mechanical stress measurements.

4. High Electron Mobility Transistor (HEMT): HEMTs utilize materials with high electron mobility, such as Gallium Nitride (GaN) or Gallium Arsenide (GaAs), to achieve high-frequency and high-power performance. These devices exhibit extremely high carrier mobility, making them suitable for radio frequency (RF) and microwave applications [9]. HEMTs are widely used in communication devices, radar systems, satellite communication, and high-frequency amplifiers.

5. Organic Field-Effect Transistor (OFET): OFETs use organic semiconductor materials instead of traditional inorganic semiconductors. They have potential applications in flexible electronics, display technology, and flexible sensors [10]. However, their performance is typically not on par with silicon based MOSFETs. OFET applications include flexible displays, biomedical sensing, and flexible electronic devices.

These typical FET devices play crucial roles in various application domains, spanning from high-frequency RF circuits to low-power digital circuits, as well as in sensing and flexible electronics. They represent key innovations in the field of semiconductor devices and continually drive the advancement of modern electronic technology.

3. Analysis of Application Scenarios of Field Effect Transistors

3.1. Chemical Sensor

Over the past three decades, the semiconductor industry has made remarkable strides in standardizing manufacturing processes, achieving high levels of integration, and effectively managing scalable manufacturing costs. This progress has paved the way for the rapid advancement of biospecific assays featuring reusable functionality, all thanks to the substantial attention and effort devoted to the design and fabrication of semiconductor-based biosensors [11].

EGFET sensors find widespread applications in detecting various analytes, including pH, glucose, enzymes, hydrogen peroxide, oxygen, and more. Presently, the interest in this field is experiencing a notable upswing, particularly within the medical, food, and environmental sectors. The demand for commercial biosensors is on the rise from numerous sources, driven in part by the introduction of new legislative standards aimed at addressing concerns related to food safety and public health.

3.2. Low-Power Dynamic Circuit

Dynamic logic circuits encounter leakage current during their evaluation phase, leading to a reduction in output voltage quality. To mitigate this issue, a keeper transistor is typically employed to prevent leakage from the output node. However, it’s worth noting that this keeper transistor introduces significant drawbacks in terms of both area occupancy and power consumption.

This article introduces an innovative design topology for low-power dynamic logic circuits that leverages the distinctive characteristics of steep-switching hybrid phase transition FETs, known as Hyper-FETs. Hyper-FETs capitalize on phase transition materials that demonstrate a selective insulator-to-metal transition capability, enabling them to surpass the fundamental Boltzmann's limit. Furthermore, Hyper-FETs exhibit a higher ON–OFF ratio compared to their conventional counterparts, making them a compelling choice. Leveraging this unique advantage, Hyper-FETs offer a promising solution to address the persistent leakage issues encountered in dynamic circuits [12].
3.3. Tunnel FET

Reducing power consumption is an essential consideration in the realm of analog and digital circuit design, driven by the growing need for portable electronic devices. A noteworthy avenue in achieving ultra-low power and energy-efficient circuit applications has emerged through the investigation of tunnel Field-Effect Transistor (TFET) devices. The exceptional characteristic of TFETs lies in their remarkably low inverse sub-threshold slope (SS), a feature that translates to minimal leakage energy consumption. This particular trait holds significant appeal, particularly in the context of digital circuits, and proves especially advantageous in memory applications [13].

4. Analysis of Challenges and Development Prospects

4.1. Challenges

While Field-Effect Transistors (FETs) have been rapidly advancing, challenges persist in the development of biosensors, which are compact analytical tools designed to translate biological reactions into measurable electrical signals. These miniaturized devices must possess a combination of essential qualities, including sensitivity, selectivity, speed, cost-effectiveness, and simplicity. Additionally, their functionality should remain unaffected by external factors such as temperature and pH. The collaborative efforts of scientists across diverse fields, including chemistry, biology, and engineering, are imperative for the efficient construction of biosensors, given that assembling various components of a biosensor necessitates specialized knowledge in different domains.

Researchers worldwide are actively exploring various types of biosensors, and among the array of electrical sensing devices, Field-Effect Transistor (FET) biosensors stand out as highly promising alternatives due to their inherent advantages, including speed, cost-effectiveness, and simplicity. The inception of FET biosensors dates back to fifty years ago when Bergveld introduced the first prototype [14]. Since 1970, this pioneering technology has evolved into various forms, facilitating the rapid and precise detection of diverse analytes and drugs.

While traditional sensing techniques can identify specific biomolecules, they typically demand intricate instrumentation and complex protocols, resulting in high costs, labor-intensive processes, and time-consuming analyses. The fabrication of novel, dependable FET-based biosensors, combined with specific probe modifications on their conductive channels, holds the potential to overcome these limitations, enabling real-time and label-free analysis.

4.2. Development Prospects

Graphene-based field-effect transistors (G-FETs) have garnered significant attention from researchers ever since the discovery of graphene, a two-dimensional (2D) carbon material, over a decade ago. G-FETs hold immense promise, particularly in the realm of next-generation Bioelectronics, owing to their ability to scale up production efficiently and cost-effectively. Furthermore, G-FETs offer the distinct advantage of facilitating label-free, highly sensitive, and swift analyses with the capability for high sample throughput. These unique properties, coupled with the potential for seamless integration into portable instrumentation, position G-FETs as an ideal choice for point-of-care diagnostics.

It is evident that G-FETs offer numerous advantages compared to other semiconductor technologies. While the majority of research efforts have thus far focused on research and development, achieving certain exceptional properties in mass-scale manufacturing processes has remained a challenge. Chemical vapor deposition (CVD) graphene, characterized by its high-quality growth and absence of residues and contaminants, presents an appealing avenue [15]. In the future, harnessing the full potential of G-FETs for clinical applications will necessitate comprehensive genome-wide considerations.
5. Conclusion

In conclusion, as semiconductor technology continues to advance, the significance of transistors, especially field-effect transistors (FETs), has grown exponentially. FETs play a pivotal role in regulating current flow within semiconductors, and their operation is fundamental to modern digital integrated circuits, underpinning the foundation of contemporary technology known as CMOS.

However, it is essential to acknowledge that despite the remarkable progress, FET applications face several challenges that need to be addressed. While transistor technology is still evolving and not yet fully matured, these obstacles should not diminish the profound impact they are poised to have on our lives. With the relentless march of technology development, these challenges are certain to be overcome, and FETs will undoubtedly find even broader applications in the future. The potential of transistors remains a beacon of innovation and progress that promises to shape our technological landscape for years to come.

References