
Jiayi Zhang*
Logistics Engineering College, Shanghai Maritime University, Shanghai, China
*Corresponding author: astiner60248@student.napavalley.edu

Abstract. In the background of traditional energy sources, people primarily rely on fossil fuels for electricity generation, but this leads to environmental issues and energy dependency. Therefore, the introduction of the Energy Management System (EMS) becomes crucial, which helps optimize electricity distribution and management to integrate new energy sources effectively, achieving a more sustainable, stable, and efficient electricity supply. It is not just a simple technical solution, but is a strategic approach aimed at optimizing the use and allocation of energy resources to maximize efficiency as well. The intelligent management provided by the EMS enables collaboration between new energy sources and the traditional power grid, reducing electricity costs and decreasing carbon emissions. This overview aims to delve into the core concepts, technological applications, and future trends of the EMS. It will comprehensively analyze the practical applications of the EMS in various fields from various perspectives, including system architecture and data analysis methods, and provide an in-depth understanding of their positive impact on energy efficiency, environmental sustainability, and economic development.

Keywords: Energy Management System; sustainable development; energy efficiency; new energy sources.

1. Introduction

In the modern society, the demand of the energy and the awareness of environmental protection are increasing dramatically. Therefore, to address these challenges, the idea of microgrids was first suggested by the Consortium for Electric Reliability Technology Solutions (CERTS). Microgrids integrate different Renewable Energy Source (RES) technologies to improve system controllability and maximize local energy consumption. A self-contained, decentralized system known as a microgrid is one that has a variety of distributed generators (DGs), energy storage, and regulated loads. It possesses the ability to function while connected to the primary electrical grid or autonomously in islanded mode [1]. As a solution, the energy management system (EMS) is dedicated to monitoring, analyzing, and optimizing energy usage, making it a crucial tool in today's increasingly urgent demand of sustainability. It is not just a simple technical solution, but is a strategic approach aimed at optimizing the use and allocation of energy resources to maximize efficiency as well.

It encompasses the entire process, from real-time monitoring of energy data to data analysis, and to intelligent control and decision-making. By adopting the EMS, businesses, organizations, and even individuals can better manage their energy consumption, reduce energy costs, minimize adverse environmental impacts, and respond to the ever-growing goals of sustainability. The Widespread utilization of power electronics devices can improve the operational flexibility of microgrids greatly, helping to mitigate the fluctuations in Renewable Energy Source (RES) outputs and fortify the primary electrical grid. This strategy has the potential to advance rural electrification and contribute to long-term energy sustainability, resulting in substantial advantages for consumers and society [2]. Building a highly intelligent and adaptive electrical system to achieve effective management and sustainable power supply is the core idea behind the EMS in the Smart Grid. The EMS in a smart grid consists of several devices, including smart switches, remote monitoring systems, intelligent computations, and the ability to regulate the electrical network. These gadgets provide it access to real-time knowledge of the power system's condition. Because of this, potential problems may be quickly identified and addressed, thus increasing the grid's dependability. The administration of
distributed energy resources, including solar panels and energy storage devices, is also made possible by the close integration of the EMS with the Distributed Energy Resource System (DERMS). The DER plays a crucial role in the transition to renewable energy because they are primarily based on cutting-edge technologies to support solar and wind energy, electrical energy storage systems, EV chargers, as well as aggregated DERs in forms of microgrids, virtual power plants (VPPs), and demand response (DR) programs [3].

This overview aims to delve into the core concepts, technological applications, and future trends of the EMS. It will comprehensively analyze the practical applications of the EMS in various fields from various perspectives, including system architecture and data analysis methods, and provide an in-depth understanding of their positive impact on energy efficiency, environmental sustainability, and economic development.

2. Overview of Energy Management System

In this rapidly changing energy landscape, the EMS is not just a solution but also a strategic response to global energy challenges. It plays a vital role in promoting intelligent resource utilization, reducing waste, and contributing to the development of the future energy system. By gaining a deeper understanding of the principles and applications of the EMS, people can make contributions to a more sustainable future, achieving harmony between energy and the environment.

The EMS encompasses various functions such as real-time data analysis, monitoring analysis, weather forecasting, and data collection, among others [4]. The use of EMS in a smart grid is illustrated in Fig. 1.

![Fig. 1 the various uses of EMS [4]](image)

As a comprehensive solution, the EMS is dedicated to monitoring, analyzing, and optimizing energy usage, making it a crucial tool in today's sustainability. Its core objective is to provide in-depth insights into energy consumption through real-time data monitoring and intelligent analysis, enabling the development of effective energy management strategies. With the growing demand for energy and the threat of climate change driving these concerns, the importance of the EMS is becoming increasingly significant. The concept of the EMS includes a variety of tools, procedures, and policies used to control and keep track of energy usage. It emphasizes the optimization of energy use through data analysis and intelligent control, going beyond simple energy monitoring. It can offer thorough insights by gathering energy data in real-time and revealing patterns, trends, and new opportunities in energy usage. This data-driven strategy equips businesses and people with the knowledge they need to manage resources in a way that balances social responsibility, environmental protection, and economic gain. Through the EMS, businesses can gain a better understanding of their energy usage patterns, identify high-consumption areas, and develop targeted energy-saving plans. Additionally,
the governments are increasingly prioritizing energy management, making more sustainable environmental regulations to the society. In the ever-changing energy landscape, the EMS has become an increasingly vital tool for achieving energy efficiency, cost control, and environmental sustainability, offering critical support for future sustainable development.

![Framework for the EMS](image)

Fig. 2 Framework for the EMS [5]

3. Energy Management System’s Composition and Architecture

The composition and architecture of the EMS are crucial elements for achieving energy monitoring and optimization. A typical energy management system consists of various components, including monitoring, central data processing, data analysis, and control units, which form a coordinated architecture [5]. The framework of the EMS is illustrated in Fig. 2. The primary task of it is real-time monitoring of energy consumption. This requires the use of various monitoring devices and sensors to collect several types of data related to energy usage. Like power sensors, current sensors, and voltage sensors can monitor power consumption, while others have their own effects.

It is necessary to centrally store, process, and ultimately transfer the data gathered by monitoring devices to the central processing unit. After that, data from various locations or devices can be combined using the distributed data gathering units. The central data processing unit, which oversees storing and analyzing massive volumes of energy data, is the brain of the energy management system. The data includes details about energy usage, equipment condition, and other information gathered from various sensors and monitoring tools.

The usefulness of the information regarding energy usage that may be gleaned from energy data determines its worth. The data analysis and optimization module can spot patterns, trends, and anomalies in energy data by utilizing techniques like big data analysis and machine learning. The system can offer energy optimization recommendations based on the findings of these studies to assist users in creating more efficient energy-saving and energy management plans and to automatically modify equipment operation. These control techniques must be put into action by the control and execution unit, which also modifies equipment on/off states, temperature settings, lighting parameters, and other factors to accomplish ideal energy consumption and energy-saving objectives. Therefore, the architecture of the EMS is a highly coordinated and integrated system. The synergy of these components allows it to achieve real-time energy monitoring, in-depth data analysis, and intelligent energy optimization, helping the organizations and individuals achieve optimal energy consumption management.

The Distributed Energy Resource Management System (DERMS), Microgrid Energy Management System (MG-EMS), and Smart Grid Energy Management System (SG-EMS) are the three main technologies in the EMS area. For DERMS, it is a system that integrates various distributed energy resources such as solar panels, wind turbines, energy storage systems, etc., to achieve optimal
energy management and distribution. Its primary objective is to enhance the efficiency and sustainability of the power system. The transition to renewable energy relies heavily on DERs, which are based primarily on cutting-edge technologies to support solar and wind energy, electrical energy storage systems, EV chargers, as well as aggregated DERs in the form of microgrids, virtual power plants (VPPs), and demand response programs (DR) [6].

The second technology is the MG-EMS, which is used to manage small-scale internal power networks typically composed of renewable energy sources, energy storage devices, and loads. A low-voltage distribution network comprising interconnected DERs, manageable loads, and critical loads is referred to as an MG. Depending on how the main grid operates, it can run in either a grid-connected or an island mode. Its primary purpose is to provide stable power supply, improve energy utilization, and respond to unexpected events. Reduced greenhouse gas emissions, reactive power assistance for voltage management, decentralized energy supply, integration of waste heat for cogeneration, ancillary services, and demand response (DR) are just a few benefits of microgrids. Additionally, they can lessen power outages and line losses in transmission and distribution networks. However, they also have drawbacks, such as high construction and maintenance costs and limited applicability in all regions; for large-scale energy needs, they may need to be interconnected with external grids, adding complexity [7].

The third technology is the SG-EMS, which is an upgraded system for traditional power systems. It achieves real-time monitoring and dynamic adjustment of the power system by integrating advanced communication and control technologies, thereby improving energy efficiency and reliability. The main functions of it include predicting the power output from renewable energy sources and the expected load demand, developing optimal strategies for charging and discharging energy storage devices within the microgrid, setting power and voltage setpoints for individual distributed energy controllers within the microgrid and stuff. This helps achieve the economic, sustainable, and reliable operation of an intelligent microgrid [8].

4. Data Collection and Monitoring Technologies in the EMS

By providing real-time information on energy consumption, energy data collection and monitoring devices enable customers to obtain a thorough understanding of their energy usage and make data-driven decisions. Also, various types of sensors and monitoring technologies are employed in the field.

Sensors are important components of energy data collection, as they can convert energy consumption into electrical or digital signals for collection, transmission, and analysis. The monitoring devices for different electrical parameters are linked to the communication management unit using a bus connection. This communication management unit takes on the role of protocol conversion, transforming the data into Ethernet format, and subsequently transmitting it to the monitoring layer via the communication network layer [9].

Energy data gathering allows for distant monitoring in addition to real-time monitoring. Real-time monitoring enables consumers to be always aware of their energy usage and quickly identify any anomalies. On the other hand, remote monitoring enables customers to obtain data online and manage energy usage from any location. The network communication system stands as a pivotal element within a monitoring system. The effectiveness of this communication system is critical for the precise transmission of control commands originating from the energy monitoring and management center to multiple monitoring substations. Simultaneously, it gathers data and operational information pertaining to remote monitoring substations and returns this information to the energy monitoring and management center [10].

The EMS makes real-time and remote monitoring of energy use possible through sensors, wireless sensor networks, and Internet of Things (IoT) technologies. These technologies provide critical data support for energy management.
5. **Data Analysis and Processing in the EMS**

Data analysis and processing play an important role in the EMS, as they delve deep into energy data to reveal patterns and trends in energy consumption, providing users with intelligent decision support. The EMS often work in conjunction with home automation systems and have a big impact on reducing household energy use. It gives users the tools they need to comprehend, regulate, and optimize their energy use. It plays a role both in controlling energy consumption within homes and having a positive impact on energy sustainability and efficiency on a larger scale. At the household level, these systems enable real-time monitoring and analysis of home energy consumption through smart home devices. They can provide detailed energy usage reports, helping household members understand the energy consumption of each device and offering optimization recommendations accordingly. It can also integrate with renewable energy devices such as solar panels and wind turbines. The best decisions from the received big data can be made by utilizing hardware devices like sensors and actuators, high-end microcontrollers, servers, as well as software components like data acquisition modules and middleware and leveraging current commercial business intelligence software tools [11]. Property owners can use this information to control devices, toggling them on or off. Reports and charts generated from this data will be presented to the client-side application through a web server. The client-side application interacts with various web services implemented in JavaScript to access and manipulate the database. These services facilitate data transfer between databases and return data to the requester.

6. **The Impact of EMS on Sustainable Development**

Nowadays, sustainable development is a well-known concept, and the EMS can contribute in various ways to it. They assist in accomplishing objectives for social, environmental, and economic sustainability. The EMS plays a key role in regulating household energy consumption since it is usually connected with home automation systems. These systems furnish consumers with a framework to comprehend, regulate, and enhance their energy usage [12]. It helps users identify peak energy consumption periods and areas of waste through data analysis. By implementing targeted energy optimization strategies, these systems can reduce energy consumption and prevent unnecessary waste. This aids in lowering energy costs, reducing resource depletion, and creating a more efficient and sustainable energy environment. It can help users lessen their carbon footprint, uphold corporate social responsibility obligations, and contribute to global greenhouse gas reduction targets through appropriate equipment operating modifications, energy consumption predictions, and energy optimization measures. The advantages of preserving energy go beyond resource preservation; they also assist businesses and organizations financially. By lowering energy costs and improving production efficiency, the EMS supports sustainable economic growth. Additionally, optimized energy use helps businesses enhance their competitiveness and achieve sustainable market development.

7. **Potential Innovation**

The field of the EMS is continuously evolving and innovating. With technological advancements and changing market demands, the development of it will be much more efficient. Global efforts to advance renewable energy sources and the corresponding technology that enable them to have increased significantly in recent decades. The global recognition of energy as a strategic sector has spurred governments across the globe to implement fresh regulations and policies designed to foster the adoption of renewable energy technologies. These initiatives encompass the promotion of renewable energy technologies, enhancements in energy efficiency, and the formulation of energy conservation strategies, complemented by the enactment of relevant legislative measures [5]. Energy storage technology is becoming increasingly important as the use of renewable energy sources like solar and wind power increases. To ensure effective energy storage and usage, the EMS will integrate
with energy storage technologies. It will become more adaptable and dependable as battery technology, energy storage technologies, and smart energy grids advance [13]. The application of artificial intelligence (AI) in the EMS is also expected. In the field of construction, as an example, when a particular set of indoor temperature and humidity conditions are met, the air conditioning system has the capability to regulate water valves or electronic expansion valves automatically, thereby effecting proportional modifications in indoor temperature and humidity levels. AI techniques seamlessly merge control systems with computational and communication systems, thus giving rise to an intelligent framework that fuses Control, Computation, and Communication (3C). This evolution represents a transition in building management, transforming building control into big-data-based and open-loop control from bottom-to-top and the ability of systems and different spaces to interact with each other, aiming for optimization [14].

Smart microgrids represent compact, self-reliant energy systems capable of interfacing with the primary grid or functioning autonomously. In a centralized EMS framework, a central controller consolidates diverse data sources, including the output from distributed energy resources (DERs), cost metrics, meteorological data, and the consumption patterns of individual users. Subsequently, this centralized EMS calculates the most advantageous energy allocation for the microgrid and communicates these directives to all local controllers (LCs). Conversely, within a decentralized EMS architecture, the microgrid's central controller (MGCC) engages in real-time information exchange with all LCs situated within the microgrid. The best dispatch plan is created by the MGCC and sent back to the local controllers, promoting a more decentralized, flexible, and manageable approach to energy management. This technology reduces energy transmission losses while enabling effective localized energy use [7].

8. Future Trends and Suggestions

As they continue to develop and innovate, EMS can also lower carbon emissions and achieve sustainable development. It will continue to grow and change in the future as an essential tool for accomplishing sustainable development objectives. Greater success in energy management is aspired through continued innovation and cooperation and significantly contribute to creating a greener, cleaner, and more sustainable future.

To ensure the effective operation of the EMS, the quality and accuracy of data are of paramount importance. In the future, high-quality sensors and monitoring devices, as well as stable and reliable communication networks, will be employed during data collection, transmission, and storage processes to prevent data errors and biases from impacting energy management decisions. Additionally, the EMS can further integrate with technologies from other fields such as the IoT, AI, blockchain, and stuff. This interdisciplinary integration can enhance the intelligence of it, enabling more precise data analysis and energy optimization.

9. Conclusion

In conclusion, the EMS is an essential tool for attaining sustainable development and energy efficiency. Their ongoing research and development will be crucial in creating a greener, cleaner, and more sustainable future. Through improved, more efficient, data-driven energy management, it is hoped that the EMS can address the problems in the energy sector and make positive contributions to society, the environment, and the economy. The outlook for the EMS is promising. By addressing issues such as data quality and technological innovation, these systems can better achieve energy-saving and emissions reduction goals, contributing to the construction of a greener, cleaner, and more sustainable future.
References

