Comparison and Integration of BRT and Railway Development

Hao Su*

Department of Civil, Construction and Environmental Engineering, Iowa State University, Ames, Iowa, United States

* Corresponding author: haosu@iastate.edu

Abstract. This paper investigates the comparative analysis of Bus Rapid Transit (BRT) and Railway Development as urban transportation solutions. Integrating Bus Rapid Transit and railways within urban planning is also explored, highlighting the role of feeder systems, accessibility enhancement, and land-use considerations. The paper also examines the effects of economics on both transportation modes. While BRT positively impacts local economies through reduced congestion and improved accessibility, railways, especially high-capacity systems, yield more substantial economic benefits. It can help some developing and building cities choose their priority public transportation. Both modes offer unique advantages, with BRT catering to immediate transit needs and railways contributing to enduring urban development. Integrating these modes in urban planning demands careful consideration of accessibility, sustainability, and land use, leading to efficient and sustainable transportation networks. Considering growing urbanization and transportation challenges, this study examines the background, advantages, challenges, and integration potential of these systems. The research emphasizes the need for further investigation to guide urban planners, policymakers, and transportation authorities in making informed decisions and creating well-connected and environmentally friendly urban transportation systems.

Keywords: BRT, Railway, Transit Integration, Urban Transportation.

1. Introduction

BRT and Railway are two popular solutions to transportation problems in today's mainstream cities. In most cities, however, there may be restrictions on a city's ability to select only one form of transportation due to regional, economic, policy, or environmental concerns. The demand for effective and sustainable transportation systems has risen because of the fast urbanization and population expansion in cities throughout the world. The necessity for effective public transportation alternatives has grown critical as communities work to solve their traffic, pollution, and accessibility issues. Bus Rapid Transit (BRT) and Railway Development are two important urban transportation methods that will be examined and compared in this study. This study aims to further knowledge of urban planning and transportation management by exploring the background, advantages, difficulties, and integration potential of these systems.

There has been much research on these two modes of transportation, but there needs to be more research about comparing them to choose a more appropriate mode for the city. The purpose of this research lies in its potential to inform urban planners, policymakers, and transportation authorities about the advantages and drawbacks of BRT and Railway Development. By examining their characteristics and integration possibilities, the study aims to offer insights into creating efficient, sustainable, and well-connected transportation networks. Ultimately, the findings of this research can aid in making informed decisions for future urban development, resulting in improved quality of life for urban residents and reduced environmental impacts.

2. Literature Review

2.1. BRT

Bus Rapid Transit (BRT) is an advanced form of public transportation that combines the efficiency and quality of rail transit with the flexibility of buses. It is designed as a comprehensive and integrated
system with stations, vehicles, services, dedicated running lanes, and intelligent transportation system elements. BRT aims to enhance bus-based transit’s speed, reliability, and distinct identity. A detailed definition from the Transit Cooperative Research Program (TCRP) project states that BRT is a flexible mode of rapid transit that integrates various components into a unified system with a strong and recognizable image. The design of BRT applications is tailored to suit the specific market and physical environment they serve, making them adaptable and suitable for different settings [1].

The 21st century presents a rapidly urbanizing world facing mounting challenges in transportation. With rapid motorization and worsening traffic congestion in emerging economies and growing cities, the need for efficient and sustainable transit solutions has never been more urgent. This review aims to explore the prospects of Bus Rapid Transit (BRT) as a transformative mode of urban transportation. BRT emerges as a compelling solution due to its inherent advantages. Its high-capacity, high-performance nature is poised to address the escalating urban transportation demands. As highlighted by UN-Habitat (2011), the projected urban population growth, particularly in cities with populations ranging from 100,000 to 500,000, underscores the potential of BRT’s cost-effectiveness over traditional rail systems. BRT networks offer a versatile and adaptable option for cities characterized by diverse population densities, neighborhood designs, and lifestyle preferences [2].

One of the key strengths of BRT lies in its ability to coexist with existing rail systems. The apparent dichotomy between rubber-tire BRT and steel-wheel rail is diminishing as the focus shifts towards service quality. BRT’s capability to integrate feeder and line-haul services within a single vehicle eliminates transfers, making it particularly suitable for lower-density areas. This integration not only improves convenience for passengers but also enhances the overall efficiency of the urban transit network. The evolving trends in the BRT landscape further solidify its relevance. Integration of BRT with citywide transit services allows for seamless mobility across diverse modes of transportation, providing a holistic approach to urban mobility. The involvement of the private sector in BRT operations offers innovative solutions and potentially eases financial burdens on governments. Moreover, the increasing support from national governments and the rise of bus manufacturers and technology providers from various countries indicate a vibrant and dynamic BRT industry.

However, the success of BRT implementation is not solely reliant on technical aspects. Strong and visionary political leadership emerges as a critical factor in achieving effective BRT systems. Case studies of cities like Bogotá, Curitiba, and Seoul demonstrate that political determination is essential to overcome challenges and bring about transformational changes in urban mobility. Conversely, instances of failed BRT projects in cities like Jakarta, Lagos, and Santiago underscore the impact of political pressures favoring the status quo [2].

The future of Bus Rapid Transit (BRT) appears promising as a pivotal solution to urban transportation challenges. Its adaptability, coexistence with rail systems, evolving trends, and importance of political leadership collectively contribute to its significance in shaping the mobility landscape of the 21st century. The integration of BRT within comprehensive urban transit strategies provides a multifaceted approach to meet the diverse needs of urban populations while addressing environmental concerns and enhancing overall quality of life [2].

2.2. Railway

The railway transportation system constitutes a pivotal component within the paradigm of urban design, exerting a significant impact on the sustainability and vibrancy of contemporary cities. The imperative for reliable, efficient, and environmentally conscious transportation solutions becomes increasingly pronounced as urban centers experience escalating demographic and economic expansion. The railway transportation system, encompassing a diverse array of modalities, including metro, light rail, and commuter train services, presents a nuanced and multifaceted approach to the intricate challenges engendered by urbanization. The incorporation of the railway transportation system within the framework of urban design serves as a testament to the commitment to cultivating well-integrated, accessible, and habitable urban landscapes. Through the provision of a high-capacity, expeditious, and frequently electrified mode of conveyance, this system not only mitigates vehicular
congestion but also proffers an alternative to private automobile utilization, thereby curbing carbon emissions and ameliorating atmospheric purity. The influence of the railway transit system extends beyond the purview of transportation, engendering ramifications for land utilization configurations, propelling sustainable developmental initiatives and catalyzing economic proliferation within the precincts of its trajectories. In summation, the integration of the railway transportation system within the realm of urban design assumes a role that transcends functional transportation utility. It emerges as a pivotal catalyst engendering holistic urban metamorphosis. As urban centers earnestly endeavor to attain sustainable trajectories, bolster resilience, and augment the overall quality of life, the judicious assimilation of the railway transit system into the fabric of urban planning emerges as an imperious stride toward the realization of these objectives.

For close to four decades, extensive research has demonstrated the favorable effects of nature interactions in urban settings on human health, well-being, and functioning. The varying research methodologies and measurements, however, present challenges in translating these benefits into monetary terms. While not all health outcomes need economic quantification, doing so effectively engages the public, government officials, and policymakers. Recognizing the significance of valuation in public policy, there is potential value in establishing a standardized assessment platform that defines common units of measurement for nature-related benefits. Such an approach could facilitate future research in generating comparable findings, thereby aiding policy decisions across communities and metropolitan areas. Prior research underscores the importance of devising valuation methodologies and novel approaches to better comprehend the potential economic implications of these benefits. Many urban ecosystem services can efficiently cater to diverse public needs. Demonstrating their true impact on health and quality of life could lead society to acknowledge and respond to their inherent value more fully. This suggests that bridging the gap between economic and health outcomes could pave the way for comprehensive urban development that effectively integrates the advantages of nature [3].

The ever-evolving landscape of rail transportation has seen the emergence of Automatic Train Operation (ATO) technologies as a critical element in optimizing train operations. A comprehensive review of recent research underscores this technology’s significance in enhancing rail systems’ efficiency and effectiveness. Automatic Train Operation (ATO) technologies within rail transportation systems are becoming increasingly important. ATO technologies optimize train operations through optimized speed profiles and train speed control. Integrating ATO with railway traffic management can improve network capacity, customer satisfaction, and efficiency. The synergy between ATO and railway traffic management is a central theme in the review. Researchers acknowledge the potential benefits of integrating ATO with traffic management to address network capacity challenges, customer satisfaction, reliability, and overall system efficiency. The identified direction of future research resonates with this concept, as it points toward integrating these components to realize a more harmonized and optimized rail transportation system. Furthermore, the evolving Long-Term Evolution of Railway (LTE-R) technology catalyzes innovation. The potential to leverage LTE-R for cross-border train communications and integrated traffic control offers a glimpse into the future of rail transportation systems. In conclusion, the synthesis of recent research underscores the pivotal role of ATO technologies in optimizing train operations within rail transportation systems. The integration of ATO with traffic management emerges as a focal point for enhancing network capacity and overall efficiency. The envisioned future directions in research align with the goal of realizing a seamlessly integrated and technologically advanced rail transportation landscape, setting the stage for enhanced customer experiences, energy savings, and a sustainable future [4].
3. Comparative Analysis

3.1. Effects of Economics

Bus Rapid Transit (BRT) and railways are two distinct modes of mass transit that have varying impacts on a city's economy. BRT systems are often cost-effective and swiftly implementable, positively influencing local economies through improved accessibility and reduced traffic congestion. They stimulate retail activities along their routes and can enhance workforce mobility. However, BRT's capacity limitations and susceptibility to road congestion may hinder its ability to generate significant economic shifts.

On the other hand, railways, especially high-capacity ones like commuters or high-speed trains, typically deliver a more substantial economic impact. Railways encourage urban development and real estate appreciation around stations, fostering transit-oriented development that fuels economic growth. The efficiency of railways in moving large volumes of people reduces road congestion, thus enhancing productivity and attracting investment. Moreover, railways offer greater reliability, scalability, and longer-term benefits than BRT.

The analysis reveals that the recently launched Guangzhou Bus Rapid Transit (GBRT) system has a notable positive influence on property values along its main corridor. Similarly, metro stations also contribute to increased property values, although the effects differ across districts and depend on statistical factors. Both ordinary least squares (OLS) and quantile regression methods indicate that the metro has a more substantial impact on property values compared to the GBRT. However, spatial models introduce complexity by suggesting that some of the value attributed to proximity to metro stations might stem from unobservable factors correlated with metro proximity. The study finds that the value added by the GBRT is highest in areas where it offers significant time savings, particularly when traveling to the city center and when the cost of using the GBRT is lower than the metro for the same journey. Interestingly, quantile regressions highlight a mixed scenario: the GBRT provides positive transit benefits, yet noise and traffic might create localized drawbacks, particularly evident in the preference for apartments 1 to 2 km from the GBRT corridor over those within 1 km. Conversely, being closer to the metro consistently holds a positive preference, potentially due to its underground nature causing less noise and congestion compared to the GBRT [5].

The research about the Capitalization Effects of Rail Transit and Bus Rapid Transit on Residential Property Values in a Booming Economy highlights findings from a study in Beijing, focusing on the economic impact of rail transit and Bus Rapid Transit (BRT) systems. Access to rail transit stations is associated with significant price premiums for properties, particularly in distant and low-income neighborhoods. This underscores rail transit's potential as a catalyst for urban restructuring and property development, particularly in older and disadvantaged areas. In contrast, proximity to BRT stations does not yield statistically significant effects on property prices [6].

In conclusion, while both BRT and railways contribute positively to a city's economy, railways tend to have a greater economic impact due to their capacity to drive extensive urban development, reduce congestion, and attract long-term investments. BRT systems offer immediate benefits, but their limitations in handling increased demand and generating transformative development place railways at a higher pedestal for fostering sustained economic growth and urban advancement.

3.2. Cost and Funding

When considering the financial aspects of implementing transit systems, the cost and affordability of Bus Rapid Transit (BRT) versus Railway systems play a significant role in decision-making. BRT systems typically have lower initial construction costs compared to metros. The construction of dedicated bus lanes and stations is generally more cost-effective than building underground or elevated rail lines. Feeder buses also tend to be more affordable to introduce and operate, making BRT a financially accessible option for cities with limited budgets. Additionally, BRT systems can be incrementally expanded, allowing cities to start with smaller sections and gradually extend the network based on demand and available funds. On the other hand, Metro systems often entail higher
upfront capital costs due to the need for constructing tracks, tunnels, and stations. These systems need significant infrastructure investments, which might put a burden on a city's financial capacity. However, metros can provide long-term benefits, like as lower operational costs and longer lifespans, which may eventually cover the original investment even if the initial prices may be greater [7].

Affordability includes continuing operational costs and maintenance costs as well. Since BRT systems do not use intricate rail systems, they often require less maintenance and have lower operating expenses. For cities with limited resources, this may be advantageous since it enables more effective funding allocation for other urban development initiatives. In conclusion, BRT systems provide a practical option for communities wishing to upgrade their transportation systems on a budget. For communities with higher finances and a strong commitment to sustainable urban development, metros can be a realistic choice even if they are more expensive to establish and provide long-term operational advantages. The choice between BRT and Metro ultimately comes down to a city's financial capability, long-term planning objectives, and the trade-offs between immediate expenses and potential rewards.

3.3. Environment Sustainability

The consideration of environmental sustainability is paramount when evaluating the effectiveness of different transit modes in urban development. This subsection examines how Bus Rapid Transit (BRT) and Railway Development contribute to environmental sustainability, with a particular emphasis on their impact on air quality. Drawing insights from our study's findings and delve into the varying degrees of environmental benefits associated with these transit modes. BRT can be environmentally friendly by using electric or hybrid buses. While BRT reduces individual vehicle emissions, its effectiveness in reducing congestion in densely populated areas might be limited. However, BRT's flexibility can enable a quicker transition to cleaner fuels, benefiting air quality. Railways offer better environmental sustainability because their electric-powered trains produce minimal emissions. Their higher capacity reduces road congestion, lowering overall pollution levels. Railway networks can significantly contribute to achieving urban sustainability goals by promoting public transportation and reducing the carbon footprint. BRT has the potential for sustainability through gradual improvements, while the Railway offers a more substantial reduction in emissions and traffic congestion, aligning better with long-term environmental objectives [8].

4. Integration Possibilities

4.1. Accessibility

The research about access and the choice of transit technology delves into the optimization of capital-intensive transit systems, namely railways and Bus Rapid Transit (BRT), by exploring the role of enhanced accessibility. Employing continuum approximation models in simplified scenarios, the study examines the effects of accessibility on both mobility and land use aspects. In terms of mobility enhancement, the study suggests that integrating feeder buses into the transit network can yield substantial benefits for both railways and BRT. Feeder buses, serving as connectors to trunk-line stations, demonstrate the potential to enhance cost-effectiveness and overall transit speed. By incorporating feeder systems at the outset of the design process, both rail and BRT systems can offer faster and more efficient services, which align with the transformative impact these systems can have on urban transportation. Drawing a comparison between BRT and railways regarding accessibility and mobility, the study underscores that their success hinges on effective feeder systems. BRT's adaptability allows for seamless integration of feeder buses, thereby extending its coverage and increasing its economic viability. On the other hand, railways, often associated with fixed routes, can harness feeder services strategically to expand their catchment area. Mitigating transfer penalties through thoughtful station design and network configuration emerges as a crucial factor. To conclude, the research illuminates the significance of accessibility improvements through well-designed feeder
systems for both BRT and railway systems. Such enhancements not only optimize these transit modes but also contribute to fostering efficient and appealing urban transportation solutions [9].

4.2. Sustainability and Land Use

The research paper about the BRT stations in Tehran introduces a model for analyzing the integration of Bus Rapid Transit (BRT) and railways within urban planning. The model's focus includes axial-based analysis, line density, connectivity, and the calculation of all possible destination points (PDPs) to assess land-use diversity and demand in specific station areas. The study also contrasts two models: the extended model utilizing 12 indicators and the more efficient indicator model employing only seven indicators derived from correlation tests. The comparison highlights the differences in classification outcomes between these models [10].

When considering the integration of BRT and railways in urban planning, the research findings offer valuable insights. The use of axial-based analysis provides a structured framework for evaluating transit integration, ensuring a comprehensive approach to system compatibility. This approach can aid planners in understanding how various transit modes can complement each other and meet the diverse needs of a city's residents. The incorporation of line density and connectivity as factors in the model is crucial for understanding the spatial implications of transit integration. This analysis can guide decisions on station placement and route alignment to optimize accessibility and connectivity across the urban landscape. By identifying areas with higher line density and better connectivity, planners can strategically position BRT and railway stations to enhance their accessibility and appeal. The calculation of all possible destination points (PDPs) presents a comprehensive overview of land-use diversity and demand patterns. This information is pivotal in identifying areas where transit integration can lead to the greatest impact. Planners can prioritize integrating BRT and railways in regions with high PDPs, thereby maximizing the system's potential to serve a wide range of travel needs. Comparing the two models, the research underlines the practicality of the most effective indicator model in initial evaluations. This streamlined model is particularly useful in balanced areas where fewer indicators yield meaningful results. However, it becomes clear that unbalanced areas require a more comprehensive approach due to their unique challenges and context-specific attributes. This distinction underscores the complexity of transit integration, emphasizing the need for customized solutions that address each area's specific goals and constraints. The study's approach and findings provide urban planners with a solid foundation for integrating BRT and railways effectively. By combining axial-based analysis, line density considerations, connectivity assessment, and PDP calculations, planners can make informed decisions that enhance urban transportation networks. The comparison of models emphasizes the importance of adaptability and context-awareness in tackling the diverse challenges presented by transit integration in various urban areas [10].

5. Conclusion

Based on the comparison of the Bus Rapid Transit (BRT) and Railway, each is tailored to a city's unique circumstances and priorities. The considerations outlined for BRT and Railway illuminate the diverse pathways cities can undertake to achieve their transportation and urban development objectives.

BRT emerges as an attractive option for cities grappling with limited financial resources and a pressing need to establish efficient public transportation promptly. The adaptability of existing road networks for dedicated bus lanes allows for swift implementation, facilitating improved transit accessibility and reducing congestion. This approach proves particularly valuable for enhancing transportation in specific corridors without the extensive construction periods associated with the Railway. On the other hand, the Railway serves as a compelling solution for cities contending with burgeoning populations and the urgent imperative to address severe traffic congestion. The capacity of the Railway to alleviate overcrowded roads and provide a sustainable, high-capacity transit option
aligns seamlessly with long-term urban planning goals. The substantial infrastructure investment required for a Railway underscores the city’s commitment to transformative urban development and reduced car dependency, setting the stage for robust, vibrant transit-oriented nodes.

The decision of the BRT or the Railway model exemplifies the nuanced interplay between fiscal capacity, developmental urgency, and sustainable urban aspirations. While BRT offers an elegant, cost-effective approach to immediate transit improvement, the Railway presents an enduring solution capable of reshaping urban landscapes for generations. To determine the optimal path forward, cities must meticulously evaluate their financial capabilities, growth trajectories, and environmental commitments.

Integrating Bus Rapid Transit (BRT) and railways within urban planning is a multifaceted endeavor to enhance transportation systems' efficiency, accessibility, and sustainability. In the Accessibility part, the focus is on optimizing capital-intensive transit systems, namely railways and BRT, through enhanced accessibility. The discussion emphasizes that well-designed feeder systems significantly optimize BRT and railway systems, ultimately fostering efficient and attractive urban transportation solutions. In the Sustainability and Land Use part, research provides urban planners with a comprehensive framework that combines axial-based analysis, line density assessment, connectivity evaluation, and PDP calculations. This approach enables informed decisions in enhancing urban transportation networks, emphasizing adaptability and context-awareness to effectively address the challenges of transit integration.

The integration of BRT and railways in urban planning is a dynamic process that requires considerations of accessibility, sustainability, and land use. Feeder systems are pivotal in optimizing transit modes, enhancing mobility, and fostering economic viability. Additionally, models like axial-based analysis provide structured frameworks for transit integration, considering factors like line density and connectivity to maximize the impact on land use. These studies collectively contribute to understanding how BRT and railways can collaboratively shape efficient and sustainable urban transportation systems.

References
