Multi-Technique Integration in Brain-Computer Interface-VR: Challenges and Opportunities

Haoqi Li*

College of arts and sciences, Georgia State University, Atlanta, United States

*Corresponding author: hli42@student.gsu.edu

Abstract. Nowadays, BCI-VR (Brain-Computer Interface with Virtual Reality) integration is a hot technology. There is an urgent need for immersive experiences and better neurorehabilitation tools, so researchers are focusing on BCI-VR integration technology. However, BCI-VR technology still has many challenges and difficulties, such as the difficulty of decoding brain signals, the reliance on traditional reading modes, and ethical issues. In this paper, the researcher analyzes the current application prospects and development potential of BCI-VR integration technology, explores other possibilities of multimodal BCI-VR integration technology (e.g., AI, robotics, electrical stimulation modulation, and other mechanisms), and then analyzes its improvement techniques mainly in neural signal modulation and user experience. Through this analysis, the researcher concluded that large-scale interdisciplinary collaborations need to be established in order to reach further BCI-VR integration and bring a stronger immersive experience.

Keywords: Multi-model biosensor, Brain-Computer Interface, Interdisciplinary collaboration, Virtual Reality.

1. Introduction

Brain-computer interface (BCI) technology, coupled with the immersive experience of virtual reality (VR), has emerged as a promising avenue in neurorehabilitation and human-computer interaction. BCI platforms facilitate a direct link between the brain and external equipment, providing a distinctive avenue for individuals with neurological issues to reclaim impaired motor abilities. The integration of VR enhances the rehabilitation process by creating engaging and interactive environments that facilitate motor learning and neural plasticity.

In recent years, the development of BCI systems has accelerated, with a particular focus on motor imagery (MI) paradigms as the preferred modality due to its natural and intuitive nature for users [1]. These systems are promising for individuals with disabilities, offering a novel communication channel and motor control avenue [2]. As discussed in [3], the convergence of artificial intelligence (AI) and BCIs has paved the way for "smart" BCIs, leveraging AI-assisted analysis of neural activity to enhance clinical outcomes. Moreover, the integration of BCI with VR technology holds the potential to create ecologically valid training environments, as elucidated in [4], fostering enhanced engagement and motor learning compared to traditional rehabilitation methods.

The utility of BCIs extends beyond motor rehabilitation, encompassing domains such as neurofeedback and cognitive enhancement [5]. Efforts have been made to optimize external variables in BCI systems to maximize performance, as evidenced in [6], highlighting the significance of tailored training and feedback modalities. Furthermore, the promising interplay between BCI and haptic interfaces for enhanced neurofeedback performance is explored in [7], reflecting the potential for multisensory integration in optimizing user experience and outcomes.

Despite the remarkable progress in BCI-VR systems, challenges persist, such as individual variability in response to different display modalities [8]. Addressing these challenges could unlock the full potential of BCI-VR systems, offering a personalized and effective rehabilitation approach. This review aims to shed light on the current state of BCI-VR research, emphasizing the importance of individualized approaches, multimodal integration, and the interplay of sensory modalities in optimizing neurorehabilitation outcomes. This paper comprehensively reviews the synergistic
application of BCI and VR in various neurological contexts, highlighting their potential to reshape the landscape of medical rehabilitation and cognitive augmentation.

In the subsequent sections, we delve into the various dimensions of BCI-VR integration, encompassing technological advancements, novel paradigms, and promising applications. Through a synthesis of the findings from the aforementioned studies and others, this paper strives to provide a comprehensive overview of the state of the art in BCI-VR technology, offering insights into the challenges faced and the potential avenues for future research and clinical translation.

2. Applications and Potential of BCI-VR:

In the burgeoning field of technological integration, the confluence of Brain-Computer Interface (BCI) and Virtual Reality (VR) — termed BCI-VR — stands out as a beacon of innovation. Drawing insights from historical research, it is abundantly clear that BCI-VR has carved a distinctive niche, promising significant advancements, particularly in neurological rehabilitation and immersive entertainment.

Significant advancements have been made with applications meticulously built on MATLAB's foundation. Scholars have utilized Motor Imagery (MI) to simulate real-world contexts, aiming to elevate participant performance metrics [1]. The strength of BCI in the virtual domain lies in its synergy with interactive Graphic User Interfaces (GUI). By harnessing Linear Discriminant Analysis (LDA) classifiers, a dynamic interaction is achieved, facilitating effective integration of virtual training subjects [1]. The proposed Brain-Computer Interface (BCI) system comprises two interconnected computers: one for EEG signal capture and processing, and another for rendering a virtual reality environment via TCP/IP protocol. Using motor task (MT) protocols, the system initially records EEG signals, then processes them to extract features like statistical metrics and FFT-based attributes. An LDA classifier provides real-time feedback based on these features. Moreover, a simulated virtual home setting, made available through MATLAB’s virtual reality toolbox, allows subjects to navigate using imagined motor tasks. Figure 1 offers a cohesive depiction of this process.

![Fig. 1](image)

As we delve deeper into the applications in the realm of neurological disease rehabilitation, the commendable strides made in the field become apparent. Conventional methodologies have been transcended with the introduction of avant-garde BCI paradigms. These include but are not limited to, Motor Imagery, P300, and Steady-State Visual Evoked Potentials. The amalgamation of these...
paradigms into a unified framework augments the quality of feedback patients receive, catalyzing their recovery trajectory from neural injuries [4].

Moreover, the inherent flexibility of the brain, both in its functional dynamics and structural blueprint, hasn’t gone unnoticed. Enlightened scholars have harnessed this malleability, merging it with BCI-VR technologies. By dovetailing BCI-VR with Motor Priming (MP), a pronounced surge is witnessed in the activation of brain patterns, especially during explicit motor tasks. Such high-fidelity paradigms of BCI-VR unveil doors previously locked, granting motor priming opportunities to even those grappling with compromised motor control [9]. Preliminary forays into the domain have shed light on the immersive depths BCI-VR can plumb. The nexus between VR and heightened experiential immersion is palpable, with studies evincing a direct relationship between the depth of VR integration and enhanced neurofeedback outcomes [8].

In the vast expanse of technological evolution, BCI-VR emerges as a frontier teeming with possibilities yet to be explored. Its evolution, while deeply rooted in its core technicalities, also demands an expansive vision that discerns the harmonious confluence with other technological realms. The melding of BCI with VR is emblematic of the interdisciplinary synergy, paving avenues for futuristic solutions that straddle the worlds of therapy and entertainment alike.

Anticipating the trajectory, it is only logical to postulate that imminent research will delve into the hitherto uncharted depths of BCI-VR. This exploration could redefine our relationship with the virtual cosmos, ushering in a paradigmatic shift in our engagement, perception, and immersion in both virtual and augmented realities. Such a prospect holds the promise of technological marvel and the potential to reshape human experiences in a digitized world.

3. Technological Evolution of Multimodal BCI-VR:

The integration of multimodal Brain-Computer Interface (BCI) with Virtual Reality (VR), known as BCI-VR, is a burgeoning field at the nexus of neuroscience, computer science, and immersive technology. While the prospects are tantalizing, its journey has been punctuated by a myriad of challenges.

Primary among the challenges facing multimodal BCI-VR is the limited accuracy in translating brain signals into actionable VR commands, compounded by a narrow scope of recognizable motion commands. Such hurdles have stymied the broader acceptance and integration of BCI-VR in various sectors, from healthcare to entertainment. However, innovation is the backbone of technological evolution. By weaving together various BCI paradigms and incorporating multimodal biosensors like eye-tracking, motion capture, and electromyographic sensors, researchers are finding pathways to bypass these obstacles [10]. The ongoing progression of technology invariably presents an opportunity to infuse fresh methods and tools into the BCI-VR ecosystem, expanding its capabilities and potential applications.

One of the recent most significant technological amalgamations is the marriage of Artificial Intelligence (AI) with the BCI-VR framework [3]. With its unparalleled data processing and computational prowess, AI has been a game-changer for BCI-VR. AI has ushered in a new era for BCI-VR by facilitating intricate neural activity analysis and decoding, making its deployment more feasible in practical scenarios. The confluence of AI, BCI, and VR has yielded impressive results, notably in clinical settings, marking a transformative phase in the disciplines of neurophysiology and robotics. However, it's worth noting that while AI provides formidable capabilities, it isn't without its own set of challenges. The scientific community is ardently working to overcome obstacles such as extensive training times, achieving consistent real-time feedback, and efficient BCI monitoring.

The quality of visuals and rapid rendering are essential in virtual reality (VR) settings, more so in BCI-VR environments where the VR experience is driven by the user's neural activity. Predictive technologies have emerged as game-changers in this sphere. They can preemptively identify actions like head turns nearly half a second before they happen [11]. This article delves into real-time tracking of cognitive and emotional processes via brainwave signals, a strategy dubbed as (passive) brain-
computer interfaces or neuroadaptive tech. While strides have been made in this field, obstacles persist, such as the consistency of brain signals and issues in capturing them. The highlighted BCI strategy is geared towards forecasting head movements to minimize VR image lags. Typically, VR video streaming involves sending an entire 360° video to the user, a process that's cumbersome for several devices. An efficient alternative is to fine-tune Field-of-View (FoV) streaming techniques, which allows for smarter bandwidth usage by forecasting head turns. Such predictions are achievable with EEG signals. The research suggests leveraging EEG to determine the onset and direction of rotations. Implementing this can significantly boost the sense of immersion in VR, paving the way for more lifelike engagements, especially in areas like neurological recuperation.

Complementing the BCI-VR advancements is the integration of symbiotic robotic technologies [12]. These systems offer avenues for real-time interactions, combined with enhanced precision in offline settings. By leveraging robots calibrated to spatial tactile and auditory paradigms, and coordinating them through Internet of Things (IoT) mechanisms, there's a heightened synergy between robotic and VR platforms, creating more sophisticated control paradigms.

The domain of haptic feedback, or tactile feedback technology, is another frontier being explored in conjunction with BCI-VR. While Neural Feedback (NF) mechanisms, when paired with BCIs, predominantly employ visual stimuli for feedback, this isn't always optimal. Reduced visual acuity can lead to suboptimal user engagement in such scenarios [7]. The solution? Introducing alternative sensory feedback modalities (Figure 2). By tapping into other senses, there's an augmentation of the signal stimuli, which enhances user experience and fosters neural plasticity, paving the way for future research.
4. **Neural Signal and User Experience:**

Invasive BCIs differ from their non-invasive counterparts in requiring surgical implantation of electrodes directly onto or into the brain, allowing for direct interfacing with neural tissues. This proximity to the source of neural signals offers higher resolution and specificity in signal acquisition. The evolution of neural signal decoding technologies has been pivotal in making this a reality. Innovations in miniaturized, energy-efficient electronics and advances in biocompatible electrode materials have catalyzed the development of techniques that electrically stimulate both superficial cortical regions and deep-seated brain structures [2]. Since Wilder Penfield's discovery using electrical stimulation, ICMS (Intracortical Microstimulation) has advanced our understanding of cortical activity and its impact on sensory perception. This technique has been employed to explore precise motor and sensory cortex maps. Using ICMS, researchers have manipulated visual-motor function in macaques, eliciting specific eye movements and understanding sensory feedback mechanisms. ICMS's significance also extends to invasive BCIs (Brain-Computer Interfaces) that can restore tactile feedback in the primary somatosensory cortex. For instance, ICMS has enabled patients with spinal cord injuries to perceive hand sensations. Moreover, it's a promising avenue for enhancing brain-machine-brain interfaces, which merge movement control with sensory feedback, enhancing
the function of robotic limbs in tetraplegic subjects and potentially offering real-time sensory feedback for amputees.

However, as with any emerging technology, BCIs, especially Sensorimotor Rhythm Brain-Computer Interfaces (SMR-BCIs), are not without challenges. Their performance can be influenced by a plethora of external variables [6]. The BCI's design and type, potential environmental and physiological disturbances, the rigor and extent of user training, and feedback mechanisms—all play a critical role in the BCI's efficacy. Feedback, particularly, can be multifaceted, ranging from traditional visual and auditory signals to more advanced feedback systems integrated with virtual reality, magnetic interfaces, and even proprioceptive and tactile mechanisms. Further complicating the landscape is the precision required in assembling and positioning EEG electrodes and the omnipresent challenge of recording artifacts, which are unintended and misleading signals or "noise" that can significantly degrade the accuracy of BCIs.

Integrating BCIs with Virtual Reality (BCI-VR) adds another layer of complexity, especially concerning neural signal processing. The immersive nature of VR, combined with the real-time demands of BCIs, necessitates the development of robust, reliable, and rapid signal processing algorithms. Introducing a neural-based metric method for VR/AR simulations is a step forward. By harnessing event-related potentials, a type of neural response resulting from specific sensory, cognitive, or motor events, researchers have detected disruptions in user experience. Impressively, with the help of predictive error features, these interruptions can be classified with an accuracy rate of up to 77% [5]. This paves the way for developing adaptive user interfaces that can proactively respond to potential disruptions, further enhancing the overall user experience.

Future developments in BCI-VR can be expected to revolve around improving the biocompatibility and longevity of implanted devices, refining neural decoding algorithms, and integrating richer multi-modal feedback systems. A holistic approach, considering the neurophysiological, technological, and user experience facets, will be vital in realizing the full potential of BCI-VR systems. As we stand on the cusp of this neurotechnological revolution, the symbiosis of brain and machine edges closer to becoming a seamlessly integrated reality.

5. Conclusion

This paper discusses the current status of BCI-VR technology and the possibility of integrating multimodal BCI-VR technology, which faces both challenges and opportunities in the future. The current landscape of BCI-VR integration is a testimony to our era's profound technological strides, yet it illuminates the intricate challenges ahead. As we delve deeper into the nuances of this integration, the role of BCI stands out as a pivotal "bi-directional gateway" bridging the human brain's cognitive prowess with machines' computational capabilities. This transformative potential, however, is juxtaposed against significant functional limitations that researchers and practitioners face daily.

The domain of signal output, in particular, reveals a complex puzzle. In its intricate and multifaceted nature, the task of decoding brain signal activity is yet to be mastered. While we possess the technological means to capture and interpret these signals, translating them to reflect a subject's precise intention remains an art combined with science. Such imperfections in translation often manifest as rigid interfaces, characterized by latency, reducing the efficiency and responsiveness when one tries to control external devices through BCIs.

Simultaneously, the challenges on the input side present their unique set of complications. Ethical considerations loom large, always at the forefront of any invasive or potentially intrusive technology. Our current reliance on basic electrical stimulation hampers the dream of simulating sensory experiences exclusively through BCIs. This technological shortcoming starkly underlines the gap between our aspirations for truly immersive experiences and the present realities.

Furthermore, despite its remarkable advancements, the realm of Virtual Reality (VR) still showcases dependencies on traditional modalities such as eye-tracking and hand control. Such a
paradigm inherently limits the potential for direct sensory manipulation using electrodes and often complicates intuitively understanding user intentions solely based on neural commands.

In this milieu, Artificial Intelligence (AI) emerges as both a beacon of hope and a source of new challenges. Its potential to significantly ameliorate signal processing challenges in the BCI-VR amalgamation is undeniable. Yet, AI's intrinsic complexities, encompassing issues related to transparency, decision-making, and ethical considerations, add layers of challenges to this technological marriage.

Another pressing concern revolves around the fabrication and sustainability of brain-machine interfaces. Their long-term reliability, safety, especially in invasive BCIs, and user comfort present ongoing research and development hurdles. Each of these challenges underscores the imperative of robust, interdisciplinary collaboration, encompassing fields from neuroscience to materials science and bioengineering.

However, it's essential to view this panorama not just through a lens of challenges but also one of opportunities. The indefatigable spirit of researchers, developers, and innovators worldwide is gradually but assuredly dismantling these barriers. Their tenacity offers glimpses into the promising future of multimodal BCI-VR integration. Each day, we move closer to seamlessly merging visual, auditory, tactile, and other sensory feedback, promising experiences that are more enriched, holistic, and truly immersive.

In closing, the BCI-VR domain, while riddled with contemporary challenges, stands on the cusp of revolutionary breakthroughs. The confluence of emerging technologies, interdisciplinary collaborations, and the relentless pursuit of innovation ensures that the future of BCI-VR is not just promising but is poised to redefine our very understanding of interaction, immersion, and integration.

References

