Delving into and Implementing Blockchain-related Technologies

Ye Zhang *
Oxford Brookes College, Chengdu University of Technology, Chengdu, 610059, China
* Corresponding Author Email: zhang.ye1@student.zy.cdut.edu

Abstract. Blockchain, birthed with the advent of Bitcoin, stands as a revolutionary decentralized digital ledger technology, casting light on the pathways of transparency, security, and efficiency across diverse sectors. Rooted in a blend of sophisticated technologies – from P2P network technology and encryption to timestamping – blockchain ensures secure, immutable transactions spanning its distributed nodes. Beyond its rudimentary role in Bitcoin, the technology has matured, fueling other digital currencies and leading to the emergence of private blockchains tailored for specific organizational processes. In its architectural framework, blockchain is layered with components like data, network, and consensus. Moreover, its versatile application layer introduces functionalities such as digital currencies and the dynamism of smart contracts. Yet, with all its promise, the foray of blockchain into domains such as commercial banking is still in its infancy, grappling with hurdles related to regulatory acceptance and broad market recognition. At the heart of blockchain lie its blocks: repositories of transactional data linked in a sequential chain. This design ensures paramount data integrity, upheld by stringent cryptographic principles. As industries gradually awaken to its potential, blockchain's evolutionary journey is bound to unfold further nuances, driving transformation in ways yet to be fully realized.

Keywords: Blockchain, bitcoin, decentralization, digital ledger.

1. Introduction

Blockchain technology harnesses the power of cryptography to ensure both data integrity and enhanced security. Its transformative potential has been recognized across a myriad of sectors, promising transparency, security, efficiency, and a decentralized trust mechanism that diminishes the need for intermediaries [1, 2]. At its core, generalized blockchain technology employs the distinctive blockchain data structure for data verification and storage. Coupled with this is the utilization of a distributed node consensus algorithm, responsible for the generation and timely updating of data. Cryptography stands as the bulwark of this system, safeguarding data during transmission and ensuring restricted access based on cryptographic principles. The system is further enriched with automatic scripting codes, ensuring streamlined operations and precise execution of protocols.

Beyond mere storage and security, the decentralized nature of blockchain transforms traditional models of transaction and data handling. By removing central points of control, blockchain distributes authority and trust across a network of nodes, each working in concert to validate and record data. This decentralized approach not only heightens security—making it resistant to single points of failure—but also promotes transparency. Every transaction or data entry is verifiable by any participant in the network, establishing a system of mutual trust and accountability. Moreover, the elimination of intermediaries accelerates processes, reduces potential costs, and paves the way for a more direct interaction among participants. With sectors ranging from finance to healthcare, and from supply chain management to digital identities, the prospective applications of blockchain seem boundless. As such, the burgeoning interest in blockchain's capabilities suggests a paradigm shift in how industries might operate in the near future, with enhanced trust and efficiency at the forefront.
2. Relevant theories

2.1. Definition of blockchain

In 2011, the burgeoning realm of digital currencies witnessed the emergence of new blockchain-based entrants, notably Litecoin. As the allure of this decentralized ledger technology became more evident, there was a growing curiosity about the myriad potential applications of blockchain beyond just currency. By 2014, the idea of private blockchains, tailored for specific institutional or corporate use rather than public consumption, started to gather momentum. Businesses, financial institutions, and various organizations embarked on in-depth explorations into how this innovative technology might be harnessed to optimize their operations and processes. Such investigations were driven by the desire to exploit the inherent advantages of blockchain: its transparency, security, and ability to foster trust in a trustless environment. This era marked a shift from viewing blockchain merely as a platform for cryptocurrencies to recognizing its potential in reshaping industries, enhancing supply chains, and forging novel methods of data management and sharing. While the initial appeal of blockchain was undeniably its association with cryptocurrencies, it soon became clear that its foundational principles could revolutionize multiple sectors, delivering efficiencies and value in ways previously unimagined [3].

2.2. Blockchain system

Since the blockchain is a decentralized, decentralized network ledger, its system architecture also conforms to the fundamental characteristics of the network. The network ledger constitutes a system, and the lowest and most fundamental part of the system is the data structure. This structure organizes information and data in a specific way and format, which is then entered and processed by the blockchain system. Once data is entered in unified mode [4], the network layer initiates connections, broadcasts, and verifications between nodes across the network, and the consensus layer builds blocks across the network by consensus. All blocks are "assembled" and finally the operating platform for the various system products is built.

Data Layer: Blockchains store data through blocks, and all data is contained between each data node. The data layer primarily resolves how these data can be combined into meaningful blocks. As in the cash book pictured below, each account in a one-page ledger consists of the corresponding date, voucher number, abstract, loan amount, balance, and other data to form a complete account [5].

Contract Layer: Bitcoin scripts specify all the details of the bitcoin transaction process. It is triggered by an exchange on the blockchain. Once executed, the code snippet can be read or written to the blockchain. This would enable procedural algorithms to arbitrate and enforce contracts instead of humans, saving huge trust costs in the future.

Consensus Layer: Since any node on the blockchain can generate new blocks to complete settlement, the function of the consensus layer is for the highly decentralized nodes of the P2P network to reach a consensus on the validity of block data [6], which will determine who can add new blocks can be added to the main chain.

Network layer: Functionality enabling the exchange of information between nodes in the blockchain network, including primarily P2P network mechanisms, data dissemination and verification mechanisms. Due to the nature of P2P blocks, data transmission is distributed among different nodes, and failure of some nodes or networks has little impact on the others [7].

Application Layer: It includes a variety of distributed applications (DApps) that leverage the underlying blockchain infrastructure to provide services and functionality to end users. The application layer also includes wallets, user interfaces, and other tools that allow users to manage their digital assets and interact with the blockchain system.
3. System analysis and application research

3.1. Identity authentication system

Blockchain identity authentication systems use blockchain technology to provide reliable and secure authentication. It decentralizes, protects data security and privacy, and provides traceability and transparency. Users can manage identity information independently, reduce repeated authentication, achieve cross-platform and cross-agency authentication, and control data authorization and access rights. Despite some challenges, blockchain-based identity authentication systems hold the potential to improve the personal authentication experience [8].

3.2. Supply chain application

Material Flow: Blockchain provides real-time logistics tracking and traceability, allowing stakeholders to track and verify the product shipping and delivery process. Through blockchain, participants can share and record logistics and transportation data, reduce information asymmetry, and improve visibility throughout the supply chain.

Compliance: For industries that require certificates and compliance audits, blockchain can provide secure, decentralized, verifiable certificate storage and management. For example, the food industry can use blockchain to secure organic certification, food safety standards, and origin information for products [9].

Backtracking: Chain blocks can help manage reverse supply chains such as returns, after-sales, and product recalls. Reverse supply chain management, which often involves multiple parties and complex processes, can improve traceability, reduce fraud, and increase overall efficiency by using blockchain to record and track product reflow and processing.

3.3. Agricultural economy

Crop Insurance: in agriculture, the implementation of smart contracts uniquely helps farmers purchase crop insurance and claim compensation as required by insurance companies. So far, this has been a labour-intensive and time-consuming process for both the farmer and the farmers insurance company [10]. Unpredictable and changeable weather makes it difficult to accurately assess and quickly report damage.

Agricultural Finance: Blockchain technology can increase integrity and reduce costs by making information transparent and difficult to manipulate. Additionally, when applying for loans through a decentralized feature, there is no longer a need to rely on intermediaries such as banks and credit companies to provide references, and lending institutions can access relevant data on the blockchain to do their work, which can significantly improve operational efficiency.

4. Challenges

In terms of progress in practice, blockchain technology in most commercial banking applications still has a long way to go in testing the idea and the distance used in the production of life, but also faces many difficulties in obtaining regulatory and market recognition, mainly.

4.1. Challenges posed by technological barriers to entry

According to current realities, blockchain is not very mature in its various fields, and the current blockchain is only in its infancy and represents a relatively primitive state. Blockchain technology itself is a very complex technology, involving cryptography, computational mathematics, artificial intelligence, and many other interdisciplinary and cross-disciplinary frontier fields. It is easy to understand something new, but difficult to truly master and apply it.
4.2. Security Challenges

From an Internet perspective, no system can be considered absolutely secure under any circumstances. The same is true for blockchain. Breaking a blockchain system requires attacking at least 51% of the nodes, which is difficult, but still means that there are certain vulnerabilities in the security of the blockchain, and attackers can break into individual wallets, attack related platforms, etc., and target individuals to use in their attacks. Conversion. Alias IDs between users and wallets are actually quite weak in terms of anonymity, and coupled with the open and transparent nature of bitcoin blockchain transactions, anyone observing the blockchain can draw conclusions about anything. Therefore, security of the blockchain is also a major issue.

4.3. Regulatory Challenges

As people's interest in blockchain technology grows, the frequency with which smart contracts come into people's view is gradually increasing. Simply put, blockchain provides a trusted environment for executing smart contracts, i.e., smart contracts are a growing application of blockchain technology. However, on June 17, 2016, hackers exploited a vulnerability in The DAO's smart contracts and hijacked over 3.6 million units of Ether ($60 million). The incident in which hackers hijacked Ether caused many to question the security of smart contracts, and the reputation of smart contracts quickly declined. Issues such as digital identity, smart contracts, and jurisdictional boundaries must be addressed to provide legal clarity and protect the rights and interests of blockchain network participants.

5. Conclusion

Emerging on the technological frontier, blockchain has steadily evolved and is poised to weave itself into the very fabric of daily existence. This multifaceted technology boasts potential applications across a diverse array of industries and contexts. From transforming the financial sector with decentralized transactions to offering immutable data storage for healthcare, blockchain's versatility cannot be overstated. Its decentralized nature also promises a paradigm shift in how data ownership and transfers are perceived, allowing for greater transparency and trust in digital interactions. Despite the optimism surrounding its capabilities, like all nascent technologies, blockchain does present its set of challenges and limitations. Concerns related to scalability, energy consumption, and the need for widespread understanding of its mechanics are just the tip of the iceberg. However, with the relentless march of technological progress, many of these hurdles are likely to be surmounted. As solutions to these challenges are explored and refined, it's conceivable that blockchain will become an omnipresent force, intricately interwoven with numerous facets of life, rendering it both ubiquitous and indispensable.

References

