Music Production Based on Brainwave and Acoustic Theory

Xiai Zhang*

Wuhan Britain-China School, Wuhan, China

* Corresponding Author Email: zhangchengjin@huawei.com

Abstract. The fusion of music production and cognitive science has carved a transformative path in an era characterized by tremendous technical advancement and an ever-deepening understanding of the human brain. This essay investigates this ground-breaking nexus in an effort to unravel the complex interplay between brainwave patterns and acoustic components in music and its potential to radically alter musical creativity, production, and emotional resonance. The neurological underpinnings of music's psychological effects have been revealed by recent studies looking into the relationships between brainwave patterns and musical structures. Composers and producers can create songs that are artistically compelling and scientifically informed, capable of evoking desired emotional and cognitive reactions in listeners, by merging brainwave data with acoustic theory. This method also has the potential to be therapeutic, improving emotional wellbeing through cognitive rehabilitation and stress reduction. This research aims to broaden the understanding of the art of music and increase its ability to engage people on deeper cognitive and emotional levels as technology and methodology develop. Beyond the domain of traditional rhythms and notes, it explores the world of brainwaves, enhancing knowledge of the human condition through the transforming power of music.

Keywords: Brainwave; music; electroencephalograph (EEG); psychology.

1. Introduction

In an era characterized by unprecedented advancements in technology and a deepening understanding of the human brain's intricacies, the realms of music production and cognitive science have converged to give rise to a groundbreaking avenue of creative exploration, i.e., music production based on brain wave and acoustic theory. This thesis delves into the innovative intersection of these fields, aiming to unravel the mysteries of how people’s cognitive processes interact with acoustic elements, and how this knowledge can revolutionize the way people compose, produce, and experience music.

Music, as an art form, has captivated human minds for centuries, evoking emotions, shaping cultures, and transcending linguistic barriers. With the development of digital technology, the ability to manage soundscapes and arrangements has increased dramatically. In music production, by monitoring the user's real-time brainwave data into EEG, the user can control the rhythm and tone of the music and combined with the speed and key calculated by the mood, it can generate a highly expressive progressive music [1]. Parallel to this, research in cognitive neuroscience has shed light on the nuanced ways in which human brains interpret music, demonstrating the significant influence that auditory stimuli have on emotions, memory, and cognition. In a word, a brain-computer interaction technique allows two people in remote locations to induce memories through music and communicate with each other through thinking and haptic feedback, creating a sense of calm and instant psychic communication [2]. This raises a logical question: Can a deeper musical experience result from the symbiotic interaction between music production and cognitive science.

Recent research has started to investigate the relationships between musical elements and brain wave patterns, revealing how various musical frameworks affect brain activity. People can feel relaxed when listening to the sound frequencies of classical music, but under heavy metal music, people are mostly unable to concentrate [3]. These studies provide a fresh viewpoint on the psychological consequences of music and may help inform creative choices made during composition and production. Inquiries into how this knowledge could enhance the emotional and cognitive impact of music have been sparked by the expansion of acoustic theory knowledge that has occurred
concurrently with these insights. This knowledge offers tools to modify sound at a granular level. For instance, brainwave sensors and specially designed musical instruments can greatly help users get rid of their current mental stress through music after sensing the user's stress immediately [4].

Moreover, the importance of this research rests in its ability to close the intellectual gap between art and science, fostering a fruitful interaction that benefits both fields. Composers and music producers can create songs that are not only artistically captivating but also scientifically informed to elicit desired emotional and cognitive reactions in listeners by incorporating brain wave data with acoustic theory. Additionally, this strategy has the potential to improve the therapeutic uses of music, supporting initiatives like stress reduction, cognitive rehabilitation, and emotional wellbeing. With commercially available EEG Bluetooth headsets, the sensor can keenly detect brain wave changes and provide medical professionals with a reference for the treatment of cognitive dysfunction and depression levels [5]. In conclusion, the incorporation of brain waves and acoustic theory in music composition sits at the forefront of innovation as technology continues to improve human’s abilities to quantify and manipulate brain activity. This voyage has the potential to transform people’s creative processes, heighten their understanding of the nuances of sound, and deepen the emotional and cognitive relationship to music. The goal of this research is to broaden the understanding of the art of music for human beings and increase its capacity to heal listeners on fundamental cognitive and emotional levels.

2. The History and Meaning of Music Production

A fundamental component of human culture for millennia, music is a universal form of expression. It has become a fundamental component of human existence due to its capacity to arouse emotions, convey ideas, and promote a sense of community. The creation, production, and consumption of music have all changed along with technology. Musicology has not experienced the playfulness of deconstructionism or suffered from its destructiveness; rather, musicology has seen music almost solely in terms of the synchronic. The productions of music made by musicians in early days were not up to standard. Although it had freed itself from the popular stranglehold on authenticity, historicity was still abounded on musical compositions. For instance, Stokowski’s Bach performance, like the one in Disney's Fantasia, was the embodiment of Bach's immortal image [6]. After the technique of music composition developed quickly, people gradually knew that creating aural experiences that were in tune with human emotions, thoughts, and sensations is at the heart of music production. It includes a broad range of procedures, including writing and arranging as well as recording, mixing, and mastering. Music producers strive to create aural environments that convey narratives, generate emotions, and encourage reflection through the painstaking manipulation of sound.

The neurophysiological correlates of musical experiences were established by the late 20th century, shedding light on the complex interaction between auditory stimuli and brain activity. The possibility of utilizing brainwave patterns to control musical elements has been investigated by researchers, opening the door for the incorporation of neural data into the creative process. Parallel developments in signal processing and computing power made it possible to convert neural signals into usable inputs for music-making software. Music signal is an important basis for music identification, recording and extraction of music information, and its difference after pitch and amplitude identification is the main reason for the difficulty and complexity of music identification. On this basis, a video detection method based on speech information is proposed. In this sense, to distinguish the content of music is to find out which kind of musical instrument is used in the music, or which kind of music is used [7]. Therefore, the basic principle of music production is almost the same, except that the user is given the freedom to choose the instrument, and the different tracks are formed from the electronic music signals already analyzed in the computer, thus forming a harmonious musical composition.

Music production has expanded beyond its traditional boundaries in the modern digital era, becoming a multidisciplinary field that incorporates technology, psychology, acoustics, and
aesthetics. Nowadays, digital audio workstations, virtual instruments, and synthesizers allow musicians and producers to express their artistic visions without being constrained by the limitations of physical instruments and studios. In professional recording, the virtual sound field is optimized by using the calibration monitoring system, and the influence factors such as reverberator and time delay are added. After completing the construction of the virtual music world, the playback function of the server is tested. Collect and process the sound in virtual reality. After the processing of this function, the change in sound quality is calculated. After the processing of the acoustic function, 91% of the acoustic signals can be correctly converted to the basic frequency, and 92% of the acoustic signals have no obvious acoustic signals. The study found that, whether in traditional computer music or in virtual reality technology, its timbre, timbre and timbre are made up of three parts: timbre, timbre and depth [8]. This means that music produced virtually by modern computer software can have extremely high quality, and greatly provides convenience to musicians, which is also the premise of brainwave music generation. The evolution of music creation and technological innovation are interrelated. The transformation from analog to digital has brought revolutionary changes to the industry, making it more flexible, accurate and easy to use. Digital Audio Workstations (DAWs), virtual musical instruments and plug-in devices, as important carriers of contemporary music creation, provide creators and creators with rich means of "sound discovery".

3. Music Software and Implementation Based on Brainwave

In the production of brainwave music, as a link between the brain and the outside world, BCI provides a new way to use brainwave information to manipulate software and hardware. The human mind and software complement each other, opening up a new way to express and try. In order to integrate the brainwave information into the creation of music, people should first collect and analyze the human brainwave. Electroencephalogram (EEG) is an important technique for obtaining information of neural activity in the brain. EEG data can be analyzed to extract patterns related to a particular cognitive state or emotional response. Using EEG technology, people can simply place an electrode on their head and use EEG signals to determine pressure. Through various brain wave observations, people can relieve stress by listening to music. The initial EEG signals were divided according to their frequencies, and their amplitudes ranged from 0.5 Hz to 30 Hz [9]. Using this method, the changes of brainwave after intervention were tested and analyzed. The purpose is to use non-invasive technology to identify stress and use music to control it. This information can then be converted into a control signal for music software. Combining the vocal music principle with the music creation of EEG stimulation can provide a comprehensive way for the creation of songs. On this basis, different types of EEG signals are integrated with different types of sound signals, so that musicians can create different types of music according to different types of EEG signals. These compositions connect the perceptual response of the listener to the sound quality of the music in a deeper way. The effectiveness of an adaptive multimodal emotion recognition framework based on signal stability was demonstrated after the researchers conducted experiments using datasets of brain waves and physiological signals (EEG, ECG, GSR) from people listening to music. Different from the existing algorithms, the algorithm proposed in this experiment does not completely exclude unstable modes, but dynamically adjusts the relative contribution rate of unstable modes through the corresponding stability index. It is found that the greater the proportion of different modes in emotion identification, the higher the accuracy of emotion identification [10].

The integration of brainwave data and acoustic theory into music software presents technical challenges. For instance, how to process EEG in real time, reduce the noise of EEG and improve the accuracy of EEG signal is an urgent problem to be solved in EEG research. A low signal-to-noise ratio, impure noise filtering, and a high data dimension are some of the current main issues with the EEG recognition and analysis algorithms. The filtering performance of the entire BP algorithm can be improved, and the filtering problem can be resolved, by combining the particle swarm filter algorithm with the traditional BP neural network's nonlinear mapping function to intelligently train
the low-weight particles. The two algorithms mentioned above can address the issue of low signal-
to-noise ratio (SNR) and unclean filter in EEG data processing brought on by rapid weight
degradation in traditional BP algorithm. The recognition and analysis of EEG signals in motion
images using the upgraded BP neural network algorithm is then compared to the traditional BP neural
network method using the actual data from the brain-computer interface [11]. At present, it is a
preliminary exploration to apply brainwave data and sound principles to music creation. On this basis,
people further improve the EEG recognition technology, improve the compatibility of BCI and music
software, and promote the interdisciplinary of neuroscientists, musicians and software developers.

4. Motivation

The following paragraph will start off with defining music production. After that, it will explore
the concepts that underlie the creation of brainwave music, such as brainwave frequencies and
entrainment methods. It then explores the software applications used to produce brainwave-enhanced
music, providing examples and insights into how they work. The framework then goes into several
applications, including stress relief, cognitive improvement, and therapeutic usage, all of which are
supported by research and case studies [12]. It does, however, recognize some drawbacks, such as
individual variation and ethical issues. Future prospects and prospective advancements in the subject
are outlined in the framework, with an emphasis on the influence of cutting-edge technologies,
continuous research in the field, and the development of brainwave music as a commercial and artistic
medium. In conclusion, it will emphasize how brainwave music production is interdisciplinary and
ready to promote both the music and audiovisual industries. Fig. 1 presents the framework [13].

![Fig. 1 Basic concept of the executing of data into music program.](image)

5. Basic Algorithm and Implementation

When seen in terms of technical assistance for music composition, computer music production
software is highly integrated, combining a variety of musical aspects with a variety of technological
aids. Basically, it can do a variety of tasks including FM technology, sample playback, physical
modeling, digital storage, and many more. All of these tools make it possible to create music today
in a fuller, more practical manner. It makes it possible for musicians to swiftly learn a variety of
musical aspects, improve their musical abilities, and produce greater musical compositions. Music
plays a significant role in society’s culture. The diversity of musical works reflects the diversity of
cultures. A broader range in music creation has progressively emerged alongside the development of
computer music production software, reflecting the reality that music may be real or fake, ethnic
classical, or pop mainstream [12].
One particular study, for instance, employs the main architecture depicted in the image of the CVAE-GAN model. Seq2Seq is utilized to connect the encoder and decoder in series, and generic CGAN is used for the other generators, discriminators, and classifiers. Every component is built on the GRU model with many layers. When the music is employed as the input vector in the model as seen in the image, there are a number of preliminary stages [13].

According to the experimental findings today, there is a substantial resemblance between the emotional category of the music clips created after the model learning and the pre-set emotional category. The emotional similarity scores in the other three categories differ significantly, hence the majority of the emotional similarity scores may be taught. The level of subject satisfaction with the experiment’s findings is quite high [13]. However, there are still individuals who don't have the same data as the general public, and that's individual difference.

![Fig. 2 Raw plots of attention and meditation levels for Classical music and Mozart’s music.](image1)

![Fig. 3 Relative Spectral densities of different brainwaves.](image2)

Individual variations in how the brain reacts to music can be linked to a complex interplay of elements including both innate neurobiological diversity and subjective experiences. First off, a key part is played by how uniquely each person's brain is wired and functions, including variations in neural connection and neural plasticity. These innate differences may incline people to perceive and react to music differently. These distinctions are also greatly influenced by one’s cultural background, musical training, and exposure to other musical genres and styles. When listening to music, a person’s tastes, emotional reactions, and brain patterns might change depending on their cultural setting. Additionally, memories and past experiences connected to particular songs or musical events can modify brainwave reactions. Additionally, personal characteristics like receptivity to new things or emotional sensitivity might affect how music affects a person's neurological processes. The complex interplay of biology, culture, personal history, and psychology is reflected in the rich tapestry of individual differences in brainwave reactions to music, highlighting the astonishing diversity in the
ways music engages and influences the human brain. The tests' recorded data of brainwave signals underwent additional processing and analysis, both qualitatively and statistically. Plotting the alpha and beta brainwaves in real-time for each case's attention and meditation states of the human mind served as the qualitative analysis (seen from Fig. 2) [14]. By selecting and playing multiple music tracks stored on a digital device using brain waves, which were gathered from a wireless EEG data acquisition equipment and analyzed with MATLAB. This served as audible feedback to the subjects to regulate people’s mood. Beta and gamma (high frequency brain waves associated with an aroused mental state) were detected after which relaxation music files were played, assisting the participant to achieve a relaxed mental state (seen from Fig. 3) [15].

6. Limitations and Prospects

Although the investigation into music production utilizing acoustic and brainwave theory holds promise, it is not without its limitations. One major drawback is the current constraints of neuroimaging techniques like EEG and fMRI, which may hinder the collection of the extensive data needed for precise applications in music composition. Moreover, due to individual differences in brain reactions, predicting the impact of certain stimuli on others can be challenging, given the varying cognitive and emotional profiles among individuals. Despite these limitations, the intersection of brainwave research and music shows great promise. As technology and methodologies continue to advance, it is likely to provide valuable insights and innovative applications, enriching both the fields of music and cognitive science.

7. Conclusion

In conclusion, the fascinating interaction between music composition and brainwave-acoustic theory provides an exciting new area of research where art and science come together to rethink how music affects the mind and emotions of people. This voyage has revealed the possibility of creating music that goes beyond the conventional, where compositions have a deep affinity with brainwaves rather than merely notes and rhythms. It is crucial to recognize the existing restrictions in this developing discipline, which range from the limitations of neuroimaging methods to the complex network of unique cognitive and emotional characteristics. Even while these obstacles are substantial, they are not insurmountable since technology is progressing unabatedly and people are still insatiably curious. As people look to the future, they envisage a point where the creation of music transforms into a highly individualized, healing art form that profoundly affects both hearts and minds. It is a horizon where musical landscapes that heal, provoke, and inspire are created by composers and producers using acoustic expertise and neuroscientific knowledge. It is a vista where music may both reflect our inner selves and act as a link between many cultures and emotions. People must persevere in the search of this horizon while accepting the difficulties and fostering the symbiotic link between music and cognition. Researchers have discovered that not only the possibility to revolutionize music production but also the chance to increase our understanding of the transforming power of music itself in this path of bringing science and art together. With each note, rhythm, and brainwave, people set out on a journey that deepens and enriches their understanding of the human condition. Music, with its innumerable melodies, serves as a testament to the limitless capacity of human imagination and exploration.

References


