Electromagnetic Acceleration: Principles, Applications, and Challenges

Yuekang Guo¹, *, †, Zhihao Qiao², a, †, Xingyu Ren³, b, †

¹Jilin University Jilin, China
²Hebei University of Technology Hebei, China
³Shanghai Qibao Dwight High School Shanghai, China

*Corresponding Author Email: guoyk2320@mails.jlu.edu.cn, 2653254766@qq.com,
xiren_alex@qibaodwright.org
†These authors contributed equally.

Abstract. This article provides an overview of electromagnetic acceleration, which involves using a magnetic field to accelerate charged particles, such as ions or electrons, and is widely used in various fields of science and technology. The article describes the principles of electromagnetism and its application in scientific research, transportation, military, and aerospace. It discusses the potential of electromagnetic acceleration to revolutionize high-speed rail travel and space exploration, but also highlights the engineering challenges, particularly regarding the high voltages and currents required to generate the necessary magnetic fields. The article also presents the classification and principles of electromagnetic emission technology, focusing on the three types of electromagnetic launchers: rail, coil, and reconnection. The rail-type electromagnetic launcher is a single-turn DC motor that consists of a pair of parallel metal rails and a sliding armature, while the coil electromagnetic launcher has multiple stages of coils and a transmitter coil or armature. The reconnection electromagnetic launch is a relatively new area of research, and its system consists of a coil with a gap and a magnetic core. Overall, this article provides an in-depth look at the fundamentals of electromagnetic acceleration, its practical applications, and the potential for future research and development.

Keywords: electromagnetic acceleration, electromagnetic launch, reconnection electromagnetic launch.

1. Introduction

The process of electromagnetic acceleration involves using a magnetic field to push charged particles, such as ions or electrons. This method of acceleration is already widely used in different fields of science and technology, from particle physics and medical science to space exploration. Electromagnetic acceleration can produce high-energy particles approaching the speed of light, allowing researchers to explore matter and the universe in novel ways. This article will provide an in-depth look at the fundamentals of electromagnetic acceleration, its practical applications, and the potential for future research and development.

Electromagnetic acceleration is a fascinating and rapidly developing technology that has the potential to change the way we travel, explore space, and defend our nation. It is based on the fundamental principles of electromagnetism, which were first discovered in the 19th century by scientists such as Michael Faraday and James Clerk Maxwell. These principles describe the interaction between electric and magnetic fields and how they can be used to generate motion and energy.

Since electromagnetism was first discovered, scientists and engineers have explored ways to harness its energy for practical purposes. Among the main application fields of electromagnetic acceleration are scientific research, transportation, military, and aerospace. For example, rail guns are known for their ability to reach ultra-high speeds of 2000 m/s and an overall efficiency of 30%. The expected high performance in terms of speed, efficiency, cost, and repetition rate makes this system very attractive not only for military but also for space applications aimed at directly accelerating light...
payloads into a 500 km low-Earth orbit [1]. However, the traditional rocket propulsion systems used to launch spacecraft are limited by the amount of fuel they can carry, which limits their speed and range. As a result, the electromagnetic launcher (DREL) system can cost-effectively remove debris from space [2]. At the same time, it can allow us to travel at unprecedented speeds while reducing the environmental impact of our mode of transportation. In particular, maglev trains using electromagnetic levitation and propulsion have the potential to revolutionize high-speed rail travel [3].

Despite the enormous potential of electromagnetic acceleration, it also poses significant engineering challenges, especially with regard to the high voltages and currents required to generate the necessary magnetic fields. Nonetheless, ongoing research and development is steadily pushing the boundaries of what's possible with this technology. This article will delve deeper into the principles of electromagnetic acceleration and its applications in scientific research, military and aerospace, and discuss some of the most exciting potential developments in this field.

2. The classification and principle of electromagnetic emission technology

According to the principle and structure, the electromagnetic launcher can be divided into guide rail type, coil type, and reconnection type [4]. Table I presents a description of the three structures [5].

<table>
<thead>
<tr>
<th>Classification</th>
<th>Drive Unit</th>
<th>Armature</th>
<th>Mass of Emitter (kg)</th>
<th>Velocity (m/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rail eml</td>
<td>Metal guide rail (contact)</td>
<td>Solid or plasma</td>
<td>0.001-1000</td>
<td>1-100</td>
</tr>
<tr>
<td>A coil electromagnetic launch</td>
<td>Muti-stagecoil (no contact)</td>
<td>Winding coil</td>
<td>0.1-1000</td>
<td>0.1-10</td>
</tr>
<tr>
<td>Reconnection electromagnetic launch</td>
<td>No gun barrel (no contact)</td>
<td>Nil</td>
<td>1-1000</td>
<td>1-10</td>
</tr>
</tbody>
</table>

2.1. Rail Electromagnetic Launcher

The research on rail electromagnetic launch (EML) is relatively mature, but there are still opportunities for further development. In recent years, rail-type electromagnetic launchers have undergone a series of new improvements, including segmented rail type, series type, multi-rail type, coaxial rail type, and superconducting suspension armature type [6,7]. The rail-type electromagnetic launcher is often referred to as a railgun, which can be viewed as a single-turn DC motor. It mainly consists of a pair of parallel metal rails and a sliding armature, as shown in Fig. 1. During operation, current flows through one guide rail, the armature, and the other guide rail, creating a magnetic field between the parallel rails. The armature accelerates under the action of the Ampere force. However, at ultra-high speeds, the armature experiences serious wear and ablation with the guide rail, making it difficult to launch large mass objects.

![Fig. 1. Structure diagram of rail-type electromagnetic launcher](image-url)
2.2. A coil electromagnetic launch

The coil electromagnetic launcher evolved from the motor and has the longest history among the three types. The coil electromagnetic launcher was first called the "traveling wave accelerator," "mass driver," or "coaxial launcher" [8]. The coil electromagnetic launcher is composed of multiple stages of coils and a transmitter coil or armature. Fig. 2 shows the structure diagram. When current flows into the coil, it generates a magnetic field, and the induced current generated by the transmitter coil or armature accelerates it by electromagnetic force. The driving coil of the coil electromagnetic launcher is not in contact with the armature, so it is not affected by friction, and the initial velocity of the emitter can be very small. Therefore, it is often used to launch objects with a large mass.

Fig. 2 Structure diagram of coil electromagnetic launcher

2.3. Reconnection electromagnetic launch

In the 1980s, the US Sandia National Laboratory began studying the reconnection electromagnetic launch and filed a patent application [9]. While rail-type electromagnetic and coil-type electromagnetic launches have been widely studied, reconnection electromagnetic launch is a relatively new area of research and is not yet mature. However, it has great potential for development [10]. The reconnection electromagnetic launch system consists of a coil with a gap and a transmitter, with the emitter located in the coil gap and perpendicular to the coil axis. Fig. 3 shows the system's structure diagram of reconnection electromagnetic launcher. Initially, the coil does not generate a magnetic field without current. However, when current is applied, the magnetic field lines at the end of the emitter reconnect, and the curved magnetic lines tend to straighten, generating forward thrust. As the emitter moves forward, more and more magnetic lines are reconnected, accelerating the emitter. It is important to note that while it may be visually appealing to say that the reconnection of magnetic field lines pushes the emitter forward, the essence of the reconnection electromagnetic launch lies in the electromagnetic interaction between the induced eddy current of the emitter and the magnetic field of the coil. When the coil is fed with a changing current, a changing magnetic field is generated, inducing eddy currents on the emitter. The resulting electromagnetic force drives the emitter to accelerate.

Fig. 3 Structure diagram of reconnection electromagnetic launcher

The emitter in a reconnection electromagnetic launch system does not make contact with the launcher and therefore does not experience ablation. In contrast, the efficiency of a rail electromagnetic launcher is only around 25% [11], while the efficiency of a coil electromagnetic launcher is typically over 50% [12]. The reconnection electromagnetic launch method is thus relatively low-cost and high-efficiency compared to other launch methods. Moreover, the principle
of the reconnection electromagnetic launch system ensures launch stability and reduces the likelihood of yaw during launch. Additionally, the system typically does not require a barrel or magnetic levitation device, which reduces the overall complexity of the system. As a result, further research into reconnection electromagnetic launch systems is necessary, as they have a wide range of potential applications.

3. Applications

After presenting the basic principles and technical classification of electromagnetic acceleration, it is apparent that the development of reconnected electromagnetic emission began late, but the potential for its applications in various fields is enormous. In the following section, this passage will provide illustrations of its potential applications in different fields.

3.1. Application in scientific research

In real scientific research environments, most experiments are hypothesized and conducted in low-speed environments, with the exception of large particle colliders, which can accelerate objects in atom-sized units. However, this method is very limited for large objects. With the introduction of electromagnetic ejection, this problem can be significantly improved. For example, the study of ultra-high-speed moving objects is used to investigate the equation of state of materials, or the effect of high-speed impact of ultra-high-speed projectiles on spacecraft materials. When a small projectile is accelerated to 50km/h and used to impact the fusion material, it can trigger thermonuclear fusion, making it controllable.

Inductive electromagnetic launchers rely heavily on the magnetic braking phenomenon for their operational effectiveness. This phenomenon occurs when the flux, which has penetrated the armature, begins to decrease as a result of the interaction between the armature and the magnetic field source. The point at which the magnetic field penetrates the armature is known as armature capture. At a certain stage of acceleration, this phenomenon reduces the armature's driving force and, therefore, the efficiency of synchronous wave induction coil guns that use metal as their projectile material.

During the electromagnetic acceleration process, the flux through an armature may decrease due to a decrease in the external field when the driving current falls or due to the armature's movement in a large magnetic field gradient. This decrease in flux induces a counter-current that flows in the same direction as the current in the coil, creating an attractive force component. In some cases, this attractive force can overpower the propelling force, leading to the armature's deceleration [13]. These phenomena illustrate the process and problems we are currently facing. In fact, humans do not currently have the ability to accelerate small projectiles to 50km/h, and the reconnection electromagnetic launcher is an effective tool for completing such tests.

3.2. Application in the military field

At present, the main reason why all countries in the world, especially some developed countries, attach so much importance to electromagnetic firing technology is that an analysis of artillery using conventional gunpowder shows that the muzzle velocity of the gun is close to the physical limit, making it impossible for the firing range to be longer. However, the thrust of the electromagnetic firing system is 10 times greater than that of gunpowder, and its action time can be much longer than that of gunpowder gas pressure on the projectile, and it can accelerate the projectile to a high speed of several kilometers per second to tens of kilometers per second, so that the projectile has tremendous kinetic energy and extremely strong penetrating power, thus greatly increasing the range and power of the weapon. Because the use of electromagnetic projectiles has a long range, fast speed, and high lethality; Shooting without sound, smoke, muzzle flame, with good shooting concealment; Easy range adjustment, not affected by propellant raw materials; Electric energy can be produced by any primary energy source, so its military application potential is very large, and it has become an increasingly important part of the future weapon system development plan. Fig. 4 shows the future weapon system.
The technology of electromagnetic guns has been formally included in the key technology plan of the US Department of Defense. In recent years, the US Army has conducted research on electromagnetic guns with projectile speeds of 2.5 km/s to 4 km/s, with the aim of developing new anti-armor capabilities as the main gun of future main battle tanks. The US Air Force has also demonstrated a 90mm caliber electromagnetic railgun capable of firing a 6kg projectile at an initial velocity of 2 km/s. Electromagnetic guns for tactical applications will enter the stage of full-fledged engineering development, as will electromagnetic guns for strategic defense. With the maturity of electromagnetic emission technology, electromagnetic guns will gradually become weaponized in the 21st century and widely used in the military field.

3.3. Application in the aerospace field

In certain extreme scenarios, aircraft may face insufficient conditions for takeoff, including factors such as wind speed, runway distance, and initial flight speed. Examples of such scenarios include fighter jets taking off from aircraft carriers, takeoff from mountain airfields, or medium UAV ejection takeoff. Fig. 5 shows the simple model of aircraft carriers.

This type of aircraft takeoff has a clear commonality, which is the use of rapid electromagnetic acceleration to provide sufficient acceleration and traction in extreme conditions, allowing the aircraft to generate enough lift and take off in a short amount of time.

4. Conclusion

In conclusion, electromagnetic acceleration is an innovative and powerful technology with practical applications in scientific research, military, and aerospace fields. Rail EML, coil electromagnetic launch, and reconnection electromagnetic launch are the three main types of electromagnetic acceleration technologies, each with its own advantages and disadvantages. However, due to its high efficiency, Reconnection electromagnetic launch technology has the most promising development prospects.

Moreover, electromagnetic acceleration can accelerate laboratory products to extremely high speeds, make missiles more powerful, and even launch aircraft into space at low cost and high efficiency. In the military field, electromagnetic acceleration can provide missiles with long-range, fast speed, and other important characteristics that are essential for future weapon development and have significant military application potential. The potential of electromagnetic acceleration is vast, and it is poised to revolutionize several industries in the coming years.
References


