Interconnection and Autonomous Driving: Concepts, Development process and Applications

Zhicong Sun *

Glasgow College, University of Electronic Science and Technology of China, Chengdu, China
* Corresponding Author Email: 2021190907011@std.uestc.edu.cn

Abstract. This paper provides an in-depth discussion on the concepts, development process, applications and integration of interconnection technology and autonomous driving technology. Through a comprehensive introduction to these two technologies, it reveals their positive impacts in the field of transportation and analyzes the advantages of their integration. As a technology which can connect various domains, interconnection has become a transformative force. Its implications are far-reaching, which impacts not only the digital field, but also the transportation field. Concurrently, autonomous driving technology, which dedicates to enabling vehicles to move without human intervention, is representing the future of efficient and safe transportation. In the parts of the integration of these two technologies, this paper introduces its positive impacts on driving efficiency, traffic management, and safety. However, challenges such as privacy concerns and cybersecurity threats are existed, too. Finally, some possible solutions to these issues are concluded and the future of interconnection and autonomous driving technology is anticipated.

Keywords: interconnection, autonomous driving, privacy concern, cybersecurity threat.

1. Introduction

With the speed at which technology is developing, technologies like interconnection and autonomous driving have progressively emerged as critical innovations that drive societal advancement. Interconnection technology integrates our lives with the digital world by connecting different systems in various fields. Autonomous driving technology represents the future of transportation, it is committed to achieving a safer and more efficient transportation system.

This paper is written to provide a comprehensive overview of the core principles, development process, and applications of interconnection technology and autonomous driving technology. By introducing the basic concepts and information about these two technologies, their impact in various fields, especially in the field of transportation will be provided. It will also examine the benefits of combining these two technologies and how interconnection technology is essential to autonomous driving technology. Challenges and possible solutions to this combination, such as privacy issues and cyber hacking, will also be explored. Finally, the paper will provide an outlook on the future trends of interconnection and autonomous driving technology.

2. Interconnection Technology

2.1. Concept and development process

Interconnection is a key cross-cutting concept that refers to the process of connecting different things, systems, or networks to interact and work together.

The development of interconnection has gone through several stages, and with the continuous evolution of technology, it has gradually evolved into a core feature of today's highly interconnected information society. Early computer networks were mainly focused on realizing local connectivity on a limited scale, such as the establishment of ARPANET in 1969, which laid the foundation for the Internet [1]. The commercialization and globalization of the Internet in the 1990s drove the rapid expansion of the Web into the World Wide Web era [2]. Since then, the rise of data center technology has further enhanced the interconnection of devices and systems, which supports cloud computing and big data applications [3]. The rise in popularity of the Internet of Things (IoT) in recent years has
made it easier to connect a wide range of objects and devices, creating a more expansive and intelligent network of interconnected devices [4].

This development process illustrates that interconnection is not solely an outcome of technological advancements, but also a catalyst for social, economic, and cultural transformations.

2.2. Applications of interconnection technology

The wide range of applications of interconnection in several fields highlights its importance that cannot be ignored.

In terms of network structure, interconnection is widely used in local area networks (LAN), wide area networks (WAN) and the global Internet, which builds a huge and complex information transmission network, providing users with efficient and convenient ways of communication and information acquisition [1]. In the medical field, interconnection realizes the efficient connection of medical equipment, patient information and healthcare personnel, facilitates remote medical services and real-time exchange of medical data, and improves the quality and efficiency of healthcare [5]. In manufacturing, the spread of interconnection has enabled seamless collaboration between production equipment, supply chains, and production planning, forming the basis for smart manufacturing that improves productivity and flexibility [6]. The energy sector has also benefited from the development of interconnection technology, with smart grids enabling the components of the power system to work together through interconnections, increasing the efficiency of power utilization and reducing energy waste [7]. Interconnection at the business level describes the cooperation and connectivity among enterprises, which drives the evolution of business models, builds a closer business ecosystem, and promotes innovation and development through the sharing of resources, information, and services [8].

3. Autonomous Driving Technology

3.1. Concept and development process

3.1.1. Concept of autonomous driving technology

Autonomous Driving Technology, which is an innovative highlight of the automotive industry, is leading the evolution of future transportation. The core objective of this technology is to enable vehicles to accomplish driving tasks without direct human driver operation by integrating advanced sensors, artificial intelligence, and communication systems.

First, autonomous driving technology relies on advanced sensing systems, which including lidar, camera, radar, and ultrasonic sensors, these sensing systems can acquire real-time information of the surrounding environment. By fusing the data from these sensors with high-precision maps, the vehicle can accurately sense the road, other vehicles, and obstacles, which can provide accurate input for decision-making and control [9]. Second, autonomous driving technology can make real-time decisions with the help of powerful algorithms and artificial intelligence systems. Vehicles analyze the sensory data to identify road signs, traffic signals, and the behavior of other traffic participants, in order to develop a rational driving strategy. This process involves complex decision trees and machine learning models which allow the vehicle to adapt to different traffic situations [10]. Additionally, autonomous driving technology enables cooperative driving through inter-vehicle communication. V2V (Vehicle-to-Vehicle) and V2I (Vehicle-to-Infrastructure) communication technologies enable vehicles to share real-time information, which can enhance traffic flow efficiency, and enable a safer driving experience at complex intersections and on highways [11].

It is anticipated that as autonomous driving technology advances, the transportation sector will benefit from increased safety, energy efficiency, and travel convenience.

3.1.2. Development process of autonomous driving technology

The process of the development of autonomous driving technology has gone through several key phases. Its evolution has been driven both by the improvements in computing power and sensor technology, as well as by the growing demand for traffic safety and travel convenience.
First, the birth of autonomous driving technology can be traced back to the early 20th century when attempts were mainly focused on mechanically assisted driving devices. However, autonomous driving technology has only truly reached a stage of rapid development in recent years because to the considerable increase in processing power and the maturity of sensor technology. In the 1990s and early 2000s, autonomous driving technology entered a substantial phase of research, development, and experimentation. A huge amount of research began to explore the integration of various perception, decision-making, and actuation control systems, and most of the early experiments focused on experimental sites and safe roads. In the early 2010s, with the popularization of Internet technology and the improvement of big data processing capabilities, the autonomous driving technology began to move towards the challenges of practical road. Numerous renowned manufacturers and IT firms have made large financial investments in the creation of self-driving vehicles and have carried out a number of road tests. At the same time, several startups have emerged, which drives innovation and competition across the industry. In recent years, autonomous driving technology has entered the commercialization phase, with some automakers beginning to roll out autonomous driving features in specific environments and planning to gradually expand their coverage.

This development history shows that the progress of automated driving technology is not only inseparable from the advanced technology foundation, but also deeply driven by social demand and market competition.

3.2. Core classification system for autonomous driving technology

It's crucial to note that autonomous driving can range from zero to complete. The NHTSA has five tiers for automotive automation [12]:

- **L0 - No Automation**: The vehicle's steering, braking, throttle, and motive power are all under the driver's complete and exclusive command and control.
- **L1 - Function-specific automation**: Automation is used in some control functions, such as electronically controlled stability control and pre-charged brakes.
- **L2 - Combined function automation**: At least two primary control mechanisms, like lane centering and adaptive cruise control, are automated.
- **L3 - Limited self-driving automation**: Under some traffic or environmental conditions, the driver gives up total control over all safety-critical operations and largely relies on the car to sense environmental changes that require a transfer of control to the driver. The driver will be expected to take back control of the vehicle, but with ample time to prepare.
- **L4 – Self-driving automation**: The vehicle is designed with ingenuity to monitor traffic, operate autonomously, and manage all safety-related duties during the trip (to the point of being completely driverless).

In addition, in order to realize a higher level of autonomous driving, higher requirements have been put forward for innovations in maps, communication technologies, and human-computer interaction interfaces.

In conclusion, the classification system of autonomous driving provides a clear development direction for the industry and promotes the gradual evolution and application of the technology.

4. The Combination of Interconnection and Autonomous Driving Technology

4.1. The role of interconnection technology in autonomous driving technology

Interconnection technology plays a crucial role in the development of autonomous driving technology, it enhances the functionality, convenience, and safety of autonomous driving greatly by enabling efficient communication between vehicles and between vehicles and infrastructure.

First, interconnection provides real-time and accurate traffic information to autonomous driving systems, which enables vehicles to have a better perception to their surroundings. By communicating with other vehicles and traffic infrastructure, autonomous driving vehicles can access to real-time
road conditions, intersection information, and the driving intentions of other vehicles. This sharing of information enables vehicles to plan their paths and make decisions more accurately, which improves the overall intelligence and adaptability of autonomous driving [10]. Second, interconnection helps to achieve cooperative driving between vehicles, which can avoid traffic congestion and improving road utilization. Through V2V (Vehicle-to-Vehicle) communication, autonomous driving vehicles are able to coordinate driving speeds, merge into highways, and other operations to achieve a smoother traffic flow. This cooperative driving can not only improve traffic efficiency, but also reduce the risk of traffic accidents, which can further enhance the safety [11]. In addition, interconnection provides autonomous driving vehicles more comprehensive information about the road through V2I (Vehicle-to-Infrastructure) communication, which connects vehicles to traffic signals, roadside sensors, and other infrastructure. This allows autonomous driving systems to have an accurately follow to the traffic rules, and anticipate the signal changes precisely, and make decisions quickly. This interconnection with infrastructure allows autonomous driving vehicles to have a better adaptation to the complex driving environments, which can improve the driving convenience and safety [11].

In conclusion, interconnection technology has injected new vitality into autonomous driving technology, making the autonomous driving system smarter, more efficient, more convenient and safer through the sharing of information and the collaboration between vehicles.

4.2. Case of the combination of interconnection and autonomous driving technology

Let's take Tesla's Autopilot system as an example to more clearly demonstrate the advantages of the combination of interconnection and autonomous driving technology. Advanced autopilot gear, including radar, ultrasonic sensors, and several cameras, are used in Tesla automobiles to achieve high-precision vehicle surroundings sensing.

In the case of Tesla, the interconnected technology demonstrates a distinct advantage. Tesla cars use cloud connectivity to upload data and perform software updates on a regular basis, which enhances the functionality of the autopilot. The cars' ability to connect to the cloud speeds up the intelligent algorithms’ learning process by combining a plethora of driving data from users all over the world. This interconnection technology offers a practical way of continuously improving autonomous driving systems, enabling the optimization of driving behavior and decision-making for various traffic situations.

Real-time sharing of traffic information is another benefit of the interconnection technology. Real-time access to information from other Tesla vehicles, such as traffic, road conditions, and road sign recognition, is available to Tesla vehicles that are cloud-connected. Through information sharing, Tesla cars are able to plan routes more precisely and make wiser decisions when driving, which increases overall driving efficiency and safety.

When seen as a whole, Tesla's story of success highlights the advantages of the combination of interconnection and autonomous driving technology. This case presents a convincing illustration of the direction that these two technologies are taking, highlighting the potential for these technologies to work in concert.

4.3. Challenges and possible solutions

Although the combination of interconnection and autonomous driving technology is relatively successful, however, it does present a number of challenges, including but not limited to privacy concerns and cybersecurity threats. These challenges require integrated solutions to ensure the reliability of this technology and the safety of the users.

The first issue is the privacy concerns. Interconnection technology involves the exchange and sharing of large amounts of data, including individuals' driving tracks, location information, etc. This may raise concerns about the leakage of privacy among users. To solve this issue, technology developers and regulation makers need to establish clear privacy protection regulations and standards.
to ensure that the systems only collect and use necessary information and strictly protect the sensitive data.

The second issue is the cybersecurity threats. Interconnection technology connects vehicles to external networks, which increases the potential of cyberattack. Malicious hackers may attempt to break into the vehicle systems, disrupt their normal operation or access users' personal information. To solve this challenge, vehicle manufacturers and technology providers need to adopt advanced encryption and authentication technologies to ensure the security of the vehicle systems. In addition, the establishment of regular security updates is also an important step to ensure the system security.

While solving these challenges, industry parties should actively engage with regulators, privacy experts, and cybersecurity professionals to ensure that the combination of interconnection and autonomous driving technology strike a balance between safety, privacy protection, and compliance.

Looking at the future trends of interconnection technology and autonomous driving technology, it can be seen that these two will form a closer combination at future to drive the evolution of smarter, safer, and more convenient travel.

5. Conclusion

In conclusion, the continuous evolution of interconnection technology and autonomous driving technology marks a huge change in lots of fields. Interconnection technology brings a whole new level of convenience and efficiency to society by connecting all areas together. Autonomous driving technology, on the other hand, is a vision of a safer and more efficient transportation system for the future.

In this paper, interconnection technology and autonomous driving technology are given a comprehensive overview with their core principles, development process, and applications analyzed in depth. In particular, the positive effects of the integration of these two technologies for transportation field are highlighted. Challenges such as privacy issues, cyber hacking, etc. in this combination process are also presented. Looking ahead, interconnection and autonomous driving technology will continue to drive innovation in the transportation field, which can bring smarter and more convenient options for travel. However, in order to better meet the challenges ahead, technology security, privacy protection, and regulatory improvements are all need to be strengthened as a way to ensure the healthy development of the technology. Continuous expansion and improvement in this area will breathe new vitality into society and drive the transportation system towards a smarter and more sustainable direction.

References

