The origin and evolution of primates

Zirui Wang *
Beijing Jingshan School Caofeidian Branch, Tangshan, China
* Corresponding author: admin@bjjscfd.org

Abstract. This study presents an in-depth exploration of primate evolution, with a focus on human ancestry, offering a multifaceted view of the progression of brain development, species diversification, the emergence of complex social structures, and the variation in genetics and disease-related genes. Through the analysis of fossil records, contemporary genetic data, and meticulous behavioral studies, we find that the intricacies of primate cerebral architecture and social interactions are underpinned by distinct genetic and evolutionary foundations. Interestingly, the research suggests that reproductive barriers among primate species are not insurmountable, despite pronounced ecological and morphological distinctions, evidenced by substantial gene flow among divergent groups. The rapid evolution of sex chromosomes and the influential role of regulatory sequences in the cognitive development of primates are examined, with particular attention to the critical function of these regulatory elements in the cerebral evolution of humans. Furthermore, the study unveils the promising use of DNA methylation profiles in the reconstruction of primate evolutionary relationships, underscoring a significant correlation between the conservation of epigenetic marks and the density of transcription factor binding sites, which may offer new insights into the phylogenetic connections among primates.

Keywords: primate, evolution, reproductive isolation.

1. Introduction

Although considerable progress has been made in paleoanthropology, genetics and comparative behavior of primates, many problems about human evolution still exist, such as environmental factors in the evolution process, the relationship between genes and evolution, and the behavior and social structure of early primates. It is very important to solve the research gap in the origin and evolution of primates, because solving this gap in such research is closely related to the study of human evolution, the understanding of the natural selection process, and the understanding of the unique status of human beings in the biological world.

In terms of methods, the origin and differentiation process of primate species, including human beings, the origin of primate social behavior and social organization, and the evolution and genetic basis of various physiological characteristics of the brain were studied through multidisciplinary and interdisciplinary technical means.

Studying the origin and evolution of primates is of far-reaching significance for understanding human beings themselves [1]. As close biological relatives of human beings, primates provide us with a unique perspective to explore the root causes of human physical characteristics, behavioral habits and intellectual development. From early apes to modern humans, this evolutionary process reveals key biological changes, such as the increase in brain capacity, the emergence of upright walking, and the development of complex social structures. Through in-depth study of this process, it can not only better understand the structural characteristics and behavior patterns of human bodies, but also explore the history of human culture and evolution. In addition, this research also helps us understand the position of human beings in nature, as well as our connections and differences with other organisms. This study aims to explore primate brain evolution, species differentiation timing, species origins, the evolution of social structures, genetic diversity and extinction risk, and disease gene variant identification by examining fossil records, genetic data, and primate behavior studies to construct a comprehensive narrative of human evolution.

The structure of this article is as follows: The first part summarizes the lineage of primate animals and identifies key evolutionary traits, including the genetic basis for increased brain capacity and
complexity, providing an important molecular and evolutionary perspective for understanding the evolution of the human brain and that of other primates. The second part delves into the fossil record and archaeological discoveries that trace the evolutionary steps of Homo sapiens. The third part discusses the genetic evidence supporting our understanding of human evolution, including the latest advances in DNA analysis. The fourth part examines behavioral and cognitive aspects, comparing humans with other primates to understand the evolutionary significance of these features. Finally, the article concludes with a discussion on how these findings help us comprehend human nature and our place in the natural world.

The main goal of the above research is to deeply understand the evolutionary process, species diversity, social structure and genetic variation of primates, including humans. It analyzes the kinship and hybridization between different species, and reveals how complex social structures are formed in specific environments and genetic backgrounds. These studies are of far-reaching significance for understanding the evolutionary history, genetic basis and social behavior of primates, especially human beings. These studies provide a key scientific basis for biodiversity conservation, disease prevention and treatment, and enhance human understanding of their own origin and health.

2. The evolutionary process and development of primates

Researchers explored the evolutionary dynamics of guenons, a diverse group of African primates [1]. They uncovered extensive gene flow and ancient hybridization events, despite significant ecological and morphological divergence among lineages. The study noted that hybridization might be a driving force for adaptation and species diversification. Immune function genes were often found in hybridized regions, suggesting adaptive benefits, while genes related to pigmentation and morphology might contribute to reproductive isolation. The findings emphasize that reproductive barriers are not absolute, allowing for gene exchange even among distinct species, which challenges traditional views of species evolution. This research adds to the understanding of how hybridization can influence the evolutionary trajectory of species-rich groups. The research presents a detailed examination of the evolutionary history of the guenon primates, highlighting the significant role of gene flow across different lineages. Despite noticeable differences in their ecology and physical forms, the study demonstrates that reproductive isolation is not absolute, and genetic exchange has been prevalent. The study's insights into the impact of ancestral hybridization highlight the complexity of primate evolution, demonstrating complex evolutionary dynamics with extensive ancestral gene flow and revealing that ecological and morphological diversity did not strictly enforce reproductive barriers, allowing for cross-lineage Gene exchange. This evidence refines our understanding of primate evolution and suggests that hybridization may play an important role in species diversification. This is a major contribution to evolutionary biology and challenges traditional concepts of species. The importance of considering gene flow in understanding species diversification is highlighted, particularly in primates, which exhibit rich diversity.

The existing research revealed significant evolutionary changes over 80 million years, highlighting the diversity of sex chromosome structure and gene content among different primate lineages [2], as shown in Fig. 1. It underscores the dynamic nature of the Y chromosome's evolution, which has implications for understanding male-specific traits and disorders. The research offers conclusive evidence of the rapid evolution and diversification of the Y chromosome in primates. It reflects a complex history of structural rearrangements and gene content modifications, which have contributed to the varied phenotypes observed across different primate species. The findings enhance the understanding of sex chromosome biology, particularly the evolutionary pressures that shape male-specific genetic traits.

The study's strengths lie in its comprehensive analysis of the Y chromosome evolution in primates, offering insights into the lineage-specific adaptations and gene flow patterns. The extensive genomic data provided a detailed picture of the chromosomal changes over millions of years. However, the research might have limitations related to the species selection and potential gaps in the genetic data,
which could affect the generalizability of the findings. The study's limitations related to species selection and genetic data could include a potentially limited representation of the entire primate lineage, which may influence the conclusions about Y chromosome evolution. Additionally, incomplete genetic sequences could result in an underestimation of gene loss or misinterpretation of the evolutionary timeline.

![Figure 1. X/Y gametologues and the evolutionary strata [2].](image)

Regulatory sequences have evolved rapidly in the primate lineage, particularly influencing the brain's genetic architecture [3]. By employing comparative genomic, transcriptomic, and epigenomic analyses, the research highlights the evolution of brain genes and regulatory elements from ancestral primates to humans, offering a deeper understanding of the genetic underpinnings that distinguish human brain development. The important role of rapidly evolving regulatory sequences in primate brain development is emphasized. Rapidly evolving regulatory sequences are thought to drive high expression of genes that contribute to the development of primates, including humans. Advanced cognitive functions and increased brain complexity. These regulatory elements may influence key developmental processes such as neuronal proliferation and brain organization, which are critical for complex primate behaviors and abilities. The findings also suggest that rapidly evolving regulatory sequences may underpin cognitive and neural complexity traits in primates, including humans. This study marks a step forward in understanding the genetic factors that contribute to the unique function and structure of primate brains.

The study leveraging integrative omics to explore primate brain evolution showcases the strength of combining genomic, transcriptomic, and epigenomic analyses to uncover the role of regulatory sequences. However, it may have limitations in the representativeness of the primate species studied or in the extrapolation of findings to the entire primate clade. The limitations of extrapolating the research findings to the entire primate lineage could stem from the diverse evolutionary trajectories and environmental pressures experienced by different primate species, which may not be fully represented by the study's sample. Each primate lineage could have unique genetic adaptations that are not captured in a broader analysis. Additionally, functional validation in non-primate models, although informative, may not fully capture primate-specific complexities.

The APOL1 gene has been explored, which has evolved uniquely in primates and is implicated in kidney disease and potentially harmful effects when misoriented in the endoplasmic reticulum. APOL1's differing orientations within the endoplasmic reticulum are suggested to contribute to its cytotoxic properties, unlike its counterpart APOL2, which does not exhibit such variation in
This research advances our understanding of APOL1’s role in renal pathology and its evolutionary biology. The research presents a comprehensive evolutionary analysis of the APOL1 gene and its variants. It details the conservation of the APOL1 gene across different species, highlighting its ancient origins. The study also examines the expression patterns of APOL1 and APOL2 during mammalian organ development, suggesting distinct functions for the closely related genes. Furthermore, it explores the cellular localization of APOL1 splice variants, indicating that APOL1 can insert into the endoplasmic reticulum membrane in different orientations. This dual orientation is linked to the cytotoxic effects of APOL1, which are present in both trans and cis configurations. The study's findings contribute to the understanding of APOL1’s role in human disease, particularly in kidney function and pathology. The study provides a significant evolutionary analysis of the APOL1 gene, revealing its ancient origins and differentiated functions in APOL1 and APOL2 genes across mammalian organ development. It also elaborates on the dual orientation of APOL1 in the ER membrane, which is connected to its cytotoxic effects. However, while the data is comprehensive, the practical implications in clinical settings might require further translational research to be fully understood and applied.

The genetic mechanisms behind the brain evolution of primates is analyzed, particularly humans, focusing on regulatory elements that have evolved rapidly in the ancestors of Simiiformes, a suborder that includes humans [5]. It identifies conserved elements that evolved faster in these ancestors, suggesting they may play a role in brain development and diseases like Alzheimer's. The research highlights the importance of these elements in the development of the advanced cognitive abilities characteristic of primates and suggests their involvement in neurodegenerative diseases. The study uses comparative genomics and various bioinformatics tools to investigate these regulatory elements’ impact on gene expression and brain evolution. Regulatory elements which evolved rapidly in the ancestors of Simiiformes, known as RECEs, may play a significant role in human brain development and the advancement of cognitive functions. It suggests that RECEs contribute to the complexity of the primate brain and have implications in neurodegenerative diseases such as Alzheimer's disease. The research findings support the hypothesis that these genetic elements are crucial for the development of the unique human cognitive abilities and could be key to understanding the mechanisms behind neurodegenerative disorders. The strengths of the study likely include a comprehensive comparative genomic approach, identification of RECEs specific to the primate lineage, and association of these elements with brain development and disease, which could provide insights into the evolution of cognitive functions in primates, including humans. However, potential limitations might involve the complexity of extrapolating results from evolutionary and comparative genomic studies to functional and clinical implications. The study may also face challenges in definitively proving the causative role of RECEs in neurodevelopmental and neurodegenerative diseases without direct experimental validation. Additionally, the reliance on available databases and bioinformatic predictions might introduce biases or overlook novel elements not yet characterized.

A reverse chemical ecology approach can be used to speculate on the potential structure of pheromones in primates and their detection evolution from lemurs to humans [6]. It involved expressing and analyzing the biochemical behavior of three soluble carrier proteins (SAL) orthologs from human, lemur, and Old-World monkey species. The findings indicated that all three SALs have conserved ligand-binding spectra across evolution, suggesting large macrocyclic ketones and lactones as the best candidates for pheromones. These compounds were considered likely pheromone candidates for ancient human ancestors before the gene for the binding protein became nonfunctional in humans. The research adds to the understanding of pheromone communication in primates and suggests that similar volatile molecules may have been used for communication until the binding protein's gene became inactive in humans. A reverse chemical ecology approach suggests macrocyclic ketones and lactones as putative pheromones in some primates. It showed that SAL from lemurs to humans have conserved ligand-binding properties, indicating that similar volatile molecules might have been used for communication in early human ancestors. The findings contribute to the debate on pheromone communication in primates, especially Old-World monkeys, and suggest the
potential structures of pheromones used before the functional loss of the SAL gene in humans. The strengths of this study include its innovative approach using reverse chemical ecology to hypothesize about pheromones in primates, and the comparative analysis across different primate species, which provides insights into the evolution of pheromone communication. The research also contributes to understanding the potential pheromone structures used by early humans. However, the study has limitations, such as relying on assumptions based on ligand-binding properties without direct behavioral or ecological evidence of pheromone communication. The extrapolation of findings from a few species to a broader context might also not fully capture the complexity of pheromone communication in primates.

Previous research has involved identifying rapidly evolving regulatory sequences that have played a critical role in the development of the primate brain [7]. The research incorporates comparative genomic, transcriptomic, and epigenomic analyses to map these evolutionary changes and their impact on brain function and development across primate species, including humans. The evolution of regulatory sequences has been a significant factor in the development of the primate brain. This includes changes that may have contributed to the unique cognitive abilities of humans. The study highlights the importance of these elements in the rapid changes observed in the primate brain, providing a range of genetic elements with potential functions relevant to brain evolution, such as promoters, enhancers, silencers and insulators. These elements can influence the timing, location, and levels of gene expression and are critical for brain evolutionary processes such as neurogenesis, synaptic plasticity, and neuronal differentiation. The strengths could include the use of comprehensive omics technologies and the cross-species analysis of regulatory sequences. Weaknesses might relate to the challenges of interpreting complex genomic data and the applicability of the findings across all primate species.

There is also a study that focuses on reconstructing phylogenetic trees using DNA methylation data from primates, comparing it to traditional nucleotide-based reconstructions [8]. It finds that, except for enhancers, all genomic regions examined contain sufficient phylogenetic information from CpG methylation levels to reconstruct trees comparable to nucleotide data. The study also reveals that methylation levels at single CpG sites are conserved and predicts methylation rates in one species better than in the closest neighboring CpGs within the same species. It highlights the role of epigenetic conservation in regulating transcription factor binding density and suggests that key components of the Polycomb Repressive Complex 2 and telomerase pathways in humans have accelerated CpG methylation evolution compared to other primates. DNA methylation data from primates can be effectively used to reconstruct phylogenetic trees, offering an alternative to traditional nucleotide-based methods. It demonstrates that methylation levels at individual CpG sites are conserved across evolutionary timescales, providing valuable phylogenetic information. The research also suggests a link between epigenetic conservation and transcription factor binding density, with an accelerated evolution of CpG methylation in humans observed in key components of the Polycomb Repressive Complex 2 and telomerase pathways. This work underlines the potential of integrating genomic and epigenomic data in understanding the evolution of gene regulatory mechanisms. However, the methodology’s success heavily depends on the quality and quantity of data available, which could limit its wider application. The interpretation of integrated epigenomic and genomic data is complex and may require further refinement. Additionally, the focus on primates limits the immediate applicability to other species.

3. Conclusion

This study offers a comprehensive perspective on the evolutionary journey of primate brains, particularly human. It demonstrates that the complexity of primate brain structures and cognitive
functions is driven by multiple rapidly evolving regulatory sequences impacting brain gene expression. The findings reveal the significance of methylation data in understanding species diversity and evolutionary processes, especially in the development of human-specific cognitive abilities and brain structures. Moreover, the study highlights the importance of considering gene flow and interspecies hybridization in understanding species diversity. These insights not only deepen our understanding of primate evolution but also provide key scientific bases for biodiversity conservation, disease prevention, and treatment, while enhancing human self-awareness of origins and health.

References


