Enhancing Efficiency and Stability in Organic Photovoltaics through Advanced Material Design and Synthesis Strategies

Jiapeng Li *

College Of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, China

* Corresponding Author Email: 211010120@mail.dhu.edu.cn

Abstract. Solar energy, with its virtually limitless supply and minimal environmental impact, presents a promising avenue for sustainable energy development. Organic photovoltaics (OPVs), known for their lightweight, flexibility, and cost-effectiveness, represent a significant sector within this field. This paper explores recent advancements in OPV technology, emphasizing material design and synthesis strategies that enhance both the efficiency and stability of these devices. A comprehensive review is presented on the evolution of OPV material efficiency and stability, detailing innovative donor and acceptor materials and breakthroughs in interface engineering. Particular attention is given to controlled polymerization techniques which have been significant in producing conjugated polymers with defined molecular weights and narrow polydispersity indices. Additionally, the paper discusses the impact of various solution processing and vapor deposition methods on OPV device performance, noting their role in improving charge carrier mobility and operational stability. By highlighting both current practices and potential future directions, this review not only encapsulates the progress made in the field but also outlines the roadmap for developing high-performance, durable OPV systems, thereby making a vital contribution to the realm of organic electronics.

Keywords: Organic photovoltaics; conductive polymers, polymerization method.

1. Introduction

Solar energy, characterized by its unlimited supply, minimal pollution, and widespread accessibility, represents a sustainable energy source for the future. Among various photovoltaic technologies, OPVs stand out due to their lightweight, flexibility, and cost-effectiveness. These devices, primarily made from organic semiconductors, exploit the photoelectric effect through a basic PN junction structure consisting of P-type and N-type layers. When exposed to sunlight, these layers absorb photons, leading to electron movement from the valence to the conduction band and generating charge pairs. These pairs, driven by the electric field of the PN junction, migrate to respective electrodes, creating electrical energy.

Although organic photovoltaics (OPVs) provide several benefits over conventional silicon-based cells, including bendability, solution processability, and quick energy recovery times, their efficiency levels are often lower. Recent developments in material design and processing techniques, however, have sought to get around these restrictions. More specifically, the study has concentrated on improving the power conversion efficiency (PCE) of organic photovoltaics (OPVs), which has surpassed 13% thanks to creative organic semiconductor synthesis, optimized charge transfer interfaces, and control over the photoactive layers' morphology [1].

This paper reviews the progress in the field by systematically dividing the discussion into four main areas: the basis of OPV efficiency and stability, strategies for OPV material design, optimization in synthesis and processing technologies, and prospects for future enhancements. Each section provides a detailed examination of both historical and recent advancements, illustrating the impacts of various techniques through examples. Finally, the paper discusses future research directions aimed at morphological optimization and the development of high-performance OPVs with enhanced long-term stability.
2. Strategies for Material Design in OPVs

2.1. Advanced Donor Materials

Remarkable optical and electromagnetic qualities, combined with outstanding thermal and corrosive resilience, make polymers with conjugation a special category of semiconductors. These materials are also utilized in electroluminescent bulbs and magnetic transistors, in alongside thermoplastic solar energy cells, and a variety of merchandise are now offered on the global market.

The field of OPVs has come a long way in the last 20 years, initially utilizing wide-bandgap organic semiconductors with power conversion efficiencies (PCE) of less than 5%. The primary use of these semiconductors was to absorb UV and visible light. Subsequent research attempted to harvest infrared energy by narrowing the polymer donor spectral gap, thereby increasing the PCE to 12% in about a decade. Since 2017, progress has been made in the OPV field thanks to this technological advancement, increasing the potential PCE to 17% in just three years [2].

In recent years, a key strategy in the development of organic photovoltaic cells has been to optimize the energy levels of organic semiconductors. Reducing the bandgap has several advantages: it allows for a large utilization of infrared photons and an increase in current density; it minimizes voltage losses by reducing the energy offset between donor and acceptor charge transfer states; and it yields excellent visible range transmittance due to redshift absorption, which facilitates tandem and transparent organic photovoltaic technologies.

The feasibility of adjusting the molecular makeup of semiconductor substances to modify the microscopic topography of the photoactive sheet was shown by research conducted by Jegadesan Subbiah’s group. Their research on p-type small molecules based on benzodithiophene (BDT) and having different side chains—trialkylsilyl (BTR-TIPS), dialkylthienyl (BTR), and alkyl-thio (BTR-TE)—shows that side-chain modifications have a major impact on energy levels, morphology, charge subsequent generations and recombination, and eventually, photovoltaic profitability. As an illustration, the single-junction binary mix solar cells based on BTR-TE had the greatest PCE of 13.2%, which was ascribed to better charge transport and morphology that decreased recombination [3]. Moreover, a remarkable PCE of 16.1% was obtained by adding BTR-TE as a third component to ternary mix solar cells, highlighting the crucial role side-chain changes play in maximizing OPV productivity.

2.2. Innovative Acceptor Materials

Over the past few decades, organic photovoltaic cells (OPVs) have advanced significantly thanks to developments in material design and synthesis methods. Tang first reported on OPVs in 1986. These were initially produced with a PCE of roughly 1% utilizing a bilayer structure of copper phthalocyanine and peralkylene tetracarboxylic acid derivatives. Since then, the foundation of this technology has been the creation of novel active layer materials [4].

A significant milestone was the introduction of the soluble fullerene derivative, PCBM, which became the standard acceptor in bulk heterojunction (BHJ) OPVs due to its isotropic electron-transport capabilities and strong electron affinity. This development marked the end of a decade of stagnation in OPV research and initiated a period of rapid development. Following PCBM, attention shifted towards designing and synthesizing novel donor materials like MEH-PPV and MDMO-PPV, derivatives of poly (p-phenylenevinylene) (PPV), which served as the first generation of donor materials for BHJ solar cells (Figure 1).
The PCEs of BHJ OSCs have significantly improved thanks to the emergence of a new class of materials called non-fullerene accepting compounds (NFAs) in the last few years. Above the last five years, NFA-based solar cells have achieved efficiencies above 18% and roughly quadrupled the PCEs of their predecessors, typical fullerene acceptors. This is because NFAs offer superior light-harvesting capabilities and variable electronic energy consumption. Their improved efficiency can be ascribed to their capacity to harness a wider range of solar energy and their decreased voltage in open circuits losses.

Furthermore, there is a lot of development potential for molecules with acceptor-donor-acceptor (A-D-A) architectures. From their starting points, these materials' efficiency has grown to around 16–18% currently [6]. The conceptualization of such materials prioritizes enhancing passenger mobility and optimizing the amount of energy in order to improve the operational effectiveness of OPVs. The total performance of the device is ultimately determined by the balance between carrier extractor and interaction losses, which is mostly determined by the charge transport of carriers in organic silicon semiconductors. Consequently, with the goal to produce organic optical semiconductors with extraordinarily high efficiency, it is essential to increase the transportation of carriers. Modern polymeric and crystalline photovoltaic cells still surpass OPVs in terms of performance, notwithstanding these advancements [7]. Nonetheless, OPVs' distinct benefits—such as their semi-transparency, affordability, lightweight, and adaptability—keep them appealing for an assortment of uses outside of typical solar power generation.

2.3. Interface Engineering for Enhanced Charge Transport

Given that they enable the efficient gathering of particles such as holes and electrons at the cathode's electrode and anode, respectively, interface layers are essential to organic solar cells. Interfacial layers assist reduce PCE, fill factor, and voltage during open circuits by mitigating the problems brought on by partial contact among the active layer and the electrodes. Excessive open-circuit voltage losses and charge accumulation may result from these problems.

The primary purpose of the layers known as the electron transport layer (ETL) and the hole transport layer (HTL) is to guarantee selective charge transfer by preventing charge recombination at the electrodes. For instance, the infusion and transfer of electrons from the active interface to the cathode was improved when Tokito et al. introduced HTLs into organic electronics in the 1990s. Large numbers of moving holes, a significant band gap to keep electrons eliminated a drawback for maximizing light capture in the layer that's active, high functionality in line with the donor material's the greatest occupied atomic rotating level and the anode energy level, and chemical-based resistance to outside stimuli are all characteristics of efficient HTLs [8].

Traditionally, inorganic p-type transition metal oxides regarding MoO₃, WO₃, NiO, and Fe₃O₄ or metal sulfides like MoS₂ were used as HTLs due to their excellent stability and performance.
However, their requirement for high-vacuum deposition processes posed a challenge for cost-effective technological advancements. The development of low-temperature deposition techniques suitable for industrial scaling, such as spray casting and spin coating, has been crucial. Spin coating offers excellent repeatability in both substance thickness and arrangement, making it especially popular. Alternative deposition methods like electrochemical deposition enable precise control over the morphology of composites, enhancing the device's overall performance. The roll-to-roll process facilitates large-area production by handling substrates in rolls through various printing or coating machines, providing a scalable and continuous process advantageous over traditional vacuum methods [9].

The interfacial nanomorphology between organic polymer donors, inorganic/organic nano-interfaces within bulk heterojunction layers, and non-fullerene acceptors can be tuned. Recent findings using grazing incidence wide-angle X-ray scattering have revealed that passivating the zinc oxide electron transport layer with crystalline titanium dioxide can enhance the antimolecular order of the BHJ layer. Recent research also indicates that tuning the interfacial nanomorphology of organic polymer donors, inorganic/organic nano-interfaces throughout the bulk heterojunction layer, and non-fullerene acceptors can all be altered. The inclusion of crystalline titanium dioxide to passivate the zinc oxide electron transport layer may enhance the orientated molecular order of the BHJ layer, according to swept-incidence wide-angle X-ray scattering investigations.

3. Synthesis and Processing Techniques for OPV Material Optimization

3.1. Controlled Polymerization Methods

An alternative to conventional key creation techniques like Stille and Suzuki coupling polyamide is direct (hetero) arylation polymerization (DHAP). Direct (hetero) arylation polymerization (DHAP) links halogenated (hetero) aryl molecules with activated C-H bonds in a different (hetero) aryl chemical to generate linear π-conjugated polymers. Compared to the hazardous wastes produced by the Steele and Suzuki reactions, this method decreases the number of synthesis stages and enhances atom economy, which lowers costs and simplifies the elimination of byproducts [10]. DHAP provides a number of incentives, but it also has drawbacks, such as the potential for bifurcation or cross-linking during side reactions, a decline in optoelectronic characteristics, or the creation of soluble in water, unprocessable hydrocarbons. Furthermore, co-coupling failures may impact the polymer's stiffness and efficacy in organic electrical devices. Promising findings from recent experiments using polymers produced using DHAP have been observed. The functionality of DHAP-fabricated rr-P3HT polymer compounds in solar cells was examined by Thompson et al. in comparison to Stille-coupled polymers. The PCE of the Stille comparable was 2.30% [11].

Further enhancing the synthesis process, Thompson et al. used a "green solvent assisted" DHAP, employing 2-methyl-tetrahydrofuran with neodecanoic acid, to completely avoid β-defects. The resulting P1DHAP3 demonstrated more structural ordering in the solid state and higher hole mobility, reflected in its PCE of 3.28% against 2.86% for the traditional Stille approach. In another study, Kanbara et al. utilized DHAP in a microwave reactor to synthesize copolymers of fluorene and EDOT, achieving remarkably high molecular weights and PCEs. For example, a DHAP-synthesized copolymer exhibited a PCE of 4.08%, significantly outperforming its Suzuki counterpart, which had a PCE of just 0.480% [12]. Aqueous manufacturing of polymers with conjugation has substantial promise for gigantic, economically viable organic photovoltaic device manufacture, particularly in the setting of BHJ OPV modules. In BHJs, the intimate mixing of polymer donors with fullerene derivatives in solution leads to enhanced OPV performance due to optimal nanoscale phase separation. However, the narrow absorption profiles of many commercial conjugated polymers, combined with the limited absorption capabilities of fullerene derivatives, pose a challenge. Most of the fullerene acceptors, although accounting for more than 50% of the active layer volume, do not adequately cover the solar spectrum, so the burden of light absorption falls mainly on the donor material.
3.2. Solution Processing and Film Formation Strategies

Solution processing techniques, especially blade and slot-die coating are pivotal in the scalable production of OPV modules. These methods are well-suited for large-area manufacturing, promising cost-effective alternatives to traditional spin coating. Blade coating, in particular, achieves precise film thicknesses with minimal material wastage, enhancing economic viability for commercial applications. Blade-coated OPV cells can attain PCEs up to 6.74%, comparable to those of traditional spin-coated cells while using significantly less material. Spin coating, although offering control over film morphology and the opportunity for solvent annealing, wastes more than 90% of its materials, which becomes economically unsustainable as the area of film coverage increases. Bulk heterojunction (BHJ) OPVs are a promising category of renewable energy technologies, achieving PCEs greater than 7% with the potential to soon surpass 10%. The high performance of these cells is typically achieved using novel polymeric materials blended with fullerene derivatives like PC61BM or PC71BM. The transition to large-area printing on flexible substrates facilitates the production of lightweight, adaptable products such as window blinds and portable chargers integrated with solar systems. Despite the potential, transitioning from lab-scale to industrial-scale production has been challenging. The majority of high-efficiency devices reported utilize vacuum-deposited molybdenum oxide (MoO3) as an HTL and are tested in small active areas. For instance, Hong et al. used slot die paint, which was which includes vacuum-deposited MoO3 as HTL and ZnO ETL produced by sol-gel, to achieve a PCE within 7.5% on a surface with activity of 4.15 cm² [13]. Furthermore, Kutsarov et al. established an economical deposition method suited to roll-to-roll or sheet-to-sheet manufacturing. In addition, Lim and colleagues achieved a high efficiency of 3.93% on a component with an active area of 24 sq. cm. employing a blade-coated BHJ sheet. They built an OPV module with a slot die-coated active surface of more than 35 sq. cm. and produced a PCE that exceeded 3%. After one thousand hours of light exposure, the module continues to maintain 91.7% of its baseline PCE, demonstrating its exceptional air stability.

The development of large-scale, solution-processed OPV modules addresses significant barriers to the commercialization of OPVs. Continued innovations in material design, process optimization, and film formation strategies are crucial to enhancing the scalability and economic feasibility of OPVs. By improving process parameters, solvent systems, and deposition techniques, OPV technology is poised for significant advancements in efficiency and commercial viability [14].

3.3. Vapor Deposition for High-Quality Thin Films

The most prevalent methods for creating organic photovoltaic (OPV) devices are solution processing and vacuum-induced thermal evaporation. Many benefits are available for the production of organic photovoltaics (OPVs) using the vacuum thermal evaporation (VTE) technique, which is well-established in the organic light-emitting diode market. These benefits include enhanced equipment lifespans, homogeneous, free of imperfections large-area testimony, simplified additive manufacturing, and multilayer stack design. Many of the difficulties that solution interpreting encounters in industrial manufacturing—such as the requirement for halogen-free solvent processing, defect-free deposition over wide areas, and the high synthetic complexity of molecules—have been effectively addressed by VTE in the production of high-quality thin films. Particularly, Heliatek has used VTE to run the biggest OPV production line in the world, producing between 100 and 200 MWp annually. Notwithstanding these developments, VTE-processed OPVs are still lagging behind solution-processed OPVs in experimental benchmarks in terms of power conversion efficiencies (PCEs), which have topped 19%. In the past, variations in donor molecules have been the main cause of PCE boosts; fullerene-based OPVs reach saturation for VTE and solution processing at roughly 10% and 11%, respectively. The discovery of non-fullerene receptors (NFAs) has made it possible for small molecule/polymer systems that are solution-processed to run at about 20% of potential, greatly lowering open-circuit voltage losses. The physical characteristics of NFAs make it impossible to incorporate them into VTE processes since they are usually too big for effective evaporation. This restriction precludes VTE from being used with devices other than fullerene-based ones. However,
we have made headway in realizing an NFA-based VTE OPV with minimal voltage loss through the integration of a typical VTE donor with a benchmark solution-processed NFA Y6 in a lamination horizontal heterojunction, which configuration. This method has far less electrical loss than the entirety of the VTE device stack when compared to a comparable fullerene reference device. There is a great chance to advance OPV advancements in an approach that supports energy from renewable sources and other environmental objectives by issuing NFAs for VTEs. Proving that minimal voltage loss OPV is achievable with current VTE supply is an encouraging step forward accurate, modular OPV technology (Figure 2).

![Figure 2](image.png)

Fig 2. (a) The historical high-PCE reports comparing fullerene- and NFA-based polymer blends with fullerene-based evaporated starch treated in a solution. (b) A comparison of the bilayer data and the voltage losses. (c) The solution-deposited Y6 NFA's bilayer planar heterojunction structure with the evaporated donor. (d) The molecular components [15].

4. Future Directions in Material Design for OPVs

While OPVs have shown promising laboratory efficiencies—over 9% in single-junction and 12% in multi-junction architectures—the transition to large-scale manufacturing introduces significant challenges. Key issues include a notable reduction in efficiency at module size, necessitating advancements in device design to minimize electrical losses and enhance stability against environmental factors like water and oxygen. The scalability of OPVs also hinges on reducing the Levelized Cost of Energy (LCOE) through improvements in device efficiency, longevity, and cost-effectiveness, coupled with high throughput production that maintains consistent quality. Currently, OPVs are utilized in niche markets such as consumer electronics, which value their lightweight and flexible characteristics. However, future growth in power generation will depend on the development of advanced device architectures, like inverted and tandem structures, and improved light-harvesting and morphological control of active materials. The inherent advantages of OPVs—such as low lifecycle costs and excellent energy payback time—paired with rapid technological advancements, suggest a promising outlook for OPVs to compete with traditional energy sources as a sustainable energy solution.

5. Conclusion

In conclusion, this paper explores innovative approaches to synthesize and enhance the efficiency and stability of organic photovoltaic (OPV) materials. It addresses critical aspects such as the fundamental principles underlying OPV efficiency and stability and introduces material design strategies aimed at improving these metrics. A significant focus is placed on the development of novel donor and acceptor materials, alongside advancements in interfacial layer technologies between the active layer and the electrodes, all of which are crucial for optimizing OPV performance.
The paper provides a comprehensive analysis of controlled polymerization methods including Suzuki coupling, RAFT (Reversible Addition-Fragmentation Chain Transfer), and ATRP (Atom Transfer Radical Polymerization). These techniques are vital for creating conjugated polymers with precise molecular weights and narrow polydispersity indices, thereby enhancing the reproducibility and scalability of high-performance OPV materials. Furthermore, the effectiveness of various solution processing techniques for thin film formation is evaluated, highlighting their role in enhancing OPV device performance. The advantages of vapor deposition methods in constructing multilayer OPV structures are also discussed, emphasizing their impact on device efficiency and reproducibility. Lastly, the paper ventures into emerging materials and synthesis strategies that hold the potential to revolutionize OPV performance, pointing toward future directions in OPV material design. This review not only sheds light on current advancements but also provides insightful recommendations for research in related fields, positioning itself as a significant contribution to the field of organic electronics.

References