High Energy Density Batteries for All-Electric Aircraft: Challenges and Technological Innovations

Ziyao Chen*

Urumqi Bayi High School, Urumqi, 830000, China

*Corresponding author: wenshaoyou@ldy.edu.rs

Abstract. The development of all-electric aircraft has gained significant momentum in the global effort to achieve sustainable aviation. However, a major obstacle remains the challenge of creating high-energy-density batteries capable of meeting the stringent requirements of aviation. As the primary power source, the battery's performance is crucial to the aircraft's range, payload capacity, and overall safety. This paper focuses on the potential impact of various high-energy density battery technologies, such as lithium-ion batteries, nanobatteries, and solid-state batteries, on electric aviation. This work analyzes the advantages and limitations of each technology, highlighting key technical challenges, including thermal management, material efficiency, and lifecycle performance. In addition, the paper examines design considerations specific to aviation, such as weight, energy output, and safety regulations, with insights drawn from recent electric aircraft projects. By reviewing both successes and obstacles in the field, this study aims to offer a roadmap for the future of electric aviation and provide strategic guidance for overcoming the current technological barriers to high-performance batteries in aerospace applications.

Keywords: All-electric aircraft; energy density; battery.

1. Introduction

Driven by the increasingly severe environmental issues and the urgent need to reduce greenhouse gas emissions, the aviation industry is transforming sustainability. Electric aviation technology has emerged as a promising solution to address these challenges, garnering significant attention both domestically and internationally. Fully electric aircraft, which rely entirely on battery power rather than a hybrid of fuel and electricity, are characterized by their zero greenhouse gas emissions, thereby helping to mitigate the environmental impact of the aviation sector. Additionally, their operational noise levels are lower, as the noise generated by electric motors is significantly less than that of traditional internal combustion engines, making them more suitable for operation near urban and residential areas.

Electric aircraft also exhibit higher energy utilization efficiency compared to conventional airplanes. The history of electric aviation dates back to the early 20th century; although the technology at that time was limited, it laid the groundwork for subsequent developments. With the rapid advancements in battery technology in the 21st century, electric aviation has once again come into the spotlight. Since the 2010s, numerous countries and companies have introduced electric aircraft prototypes, marking the entry of electric aviation technology into a practical phase [1].

Currently, major international airlines such as Airbus and Boeing have begun to explore the technological pathways for electric aircraft. For instance, Airbus has launched the E-Fan project, aimed at developing small electric aircraft to promote the commercialization of electric aviation technology [2]. In China, supported by favorable policies and technological advancements, an increasing number of enterprises and universities are actively engaged in the research and development of electric aircraft, such as the electric passenger aircraft project by the Commercial Aircraft Corporation of China (COMAC) [3].

In recent years, the global aviation industry has also faced increasingly stringent emission standards and rising fuel costs. In this context, fully electric aircraft, which achieve nearly zero carbon emissions during operation compared to traditional fuel-powered airplanes, are gradually coming into broader public awareness [4].

As the power source for electric aircraft, battery technology remains the primary barrier to the widespread adoption of fully electric planes, despite progress in certain areas of electric aviation. The energy density, charging speed, and safety of batteries directly determine an aircraft's range and payload capacity, making the advancement of battery technology crucial for the development of electric aviation.

The objective of this study is to evaluate the potential impact of different energy-density battery technologies on the performance of fully electric aircraft. It will explore the advantages and disadvantages of various types of batteries in terms of their technology and applications, particularly focusing on key indicators such as energy density, efficiency, charging time, and lifespan. The findings aim to provide valuable insights for the future development of electric aviation. Furthermore, this paper will examine the application prospects of emerging battery technologies(such as solid-state batteries and lithium-sulfur batteries, etc.), as well as their performance in actual flight scenarios. The hope is that the research calls for a transition to a greener and more efficient air transport system.

2. Overview of Battery Technologies for Electric Aircraft

Traditional fuel-powered aircraft typically possess higher energy density. However, in terms of energy conversion efficiency, electric aircraft benefit from the high efficiency of electric motors, resulting in greater energy utilization efficiency. Research indicates that the energy conversion efficiency of electric aircraft can exceed 90%, while the efficiency of traditional internal combustion engines usually ranges between 30% and 40% [5]. Consequently, batteries play an indispensable dual role in electric aircraft, serving both as energy storage and power supply. Their performance directly influences the aircraft's range, payload capacity, and safety, making the selection and design of batteries critically important.

Several parameters of batteries, including energy density, weight, cycle life, and charge/discharge rates, specifically affect aircraft performance. Energy density impacts the aircraft's range, while weight directly correlates with the aircraft's payload capacity and flight efficiency. Cycle life affects the economic viability and long-term performance of the battery, and charge/discharge rates influence the aircraft's rapid charging capability and emergency takeoff readiness. Currently, lithium-ion batteries are the most commonly used type in electric aircraft; however, their limitations in energy density and weight, along with other performance factors, restrict the aircraft's range. As a result, there is an increasing demand for more advanced battery technologies and the development of new high-energy-density batteries [6].

In the field of electric aviation, several key battery technologies are currently garnering attention. In addition to lithium-ion batteries, there are lithium-sulfur batteries, nano batteries, solid-state batteries, and magnesium-ion batteries, which are still in the research and development phase.

2.1. Lithium-Ion Batteries (LIBs)

LIBs are currently the most widely used type of battery in electric aviation. Their operating principle is primarily based on the intercalation and de-intercalation processes of lithium ions, which involve electrochemical reactions and the movement of ions. The anode (negative electrode) is typically composed of materials such as graphite, which can intercalate lithium ions, while the cathode (positive electrode) is generally made from lithium metal oxides, such as LiCoO₂ and LiFePO₄.

Currently, the energy density of LIBs can reach between 150 and 250 Wh/kg, offering a relatively good cycle life; with proper management, the cycle life of LIBs can exceed 1,000 cycles. Furthermore, the manufacturing technology for LIBs has become relatively mature, leading to gradually decreasing production costs.

However, LIBs also present certain safety concerns. For instance, they may overheat and pose a fire risk under extreme conditions. More critically, the extraction and processing of lithium and cobalt place significant pressure on the environment [7,8]. LIBs are widely used in small electric aircraft

and short-haul flights. However, their relatively low energy density restricts the potential for long-haul flights.

2.2. Solid-State Batteries (SSBs)

SSBs represent an emerging battery technology that utilizes solid electrolytes, thereby avoiding the flammability associated with the liquid electrolytes found in traditional LIBs. This innovation significantly reduces the risks of thermal runaway and fire.

SSBs offer exceptionally high energy density, reaching up to 500 Wh/kg, along with enhanced safety features. Their advantages include a lower flammability risk, which greatly diminishes the potential for fires, and a longer cycle life, allowing them to maintain good performance even after multiple charging cycles.

However, SSBs are still in the research and development phase and face several challenges. These include high production costs, insufficient material stability, and suboptimal ionic conductivity of certain solid electrolytes at room temperature [9].

SSBs are suitable for long-distance and high-energy-demand aviation applications. However, the technology is not yet mature, and production costs remain high.

2.3. Advanced Lithium-Sulfur (Li-S) Battery

Li-S batteries possess an exceptionally high theoretical energy density (approximately 600 Wh/kg); however, issues related to their cycling stability and efficiency remain unresolved. Therefore, if Li-S batteries can overcome the current technological bottlenecks, they will have broad application prospects in fully electric aircraft [10].

Li-S batteries are suitable for lightweight electric aircraft designed for long-duration flights, particularly on short-haul routes. However, the battery has a short lifespan, and the charging time is relatively long, which may make it unsuitable for aviation operations that require quick charging.

2.4. Nano Battery (NB)

NB leverages nanomaterials to enhance battery performance, characterized by higher charge and discharge rates. The high surface area of nanomaterials enables faster charging and discharging capabilities. Additionally, NB exhibits superior cycling stability, as their nanostructure reduces volume changes during charge and discharge cycles, thereby extending battery life. However, the commercialization of NB still faces challenges, primarily due to high production costs and immature technologies [11].

NB is suitable for applications requiring fast charging and high power output. However, currently in the research and development phase, it undergoes a slow commercialization process.

2.5. Magnesium-Ion Battery (MIB)

MIB, as an emerging battery technology, possesses several advantages, including a relatively high theoretical energy density, enhanced safety, and lower cost. The energy density of these batteries can reach between 200 to 300 Wh/kg. However, due to the electrochemical characteristics of magnesium ions, the current technology remains in the research and development phase and has not yet been widely applied in the aerospace sector [12].

MIB is suitable for long-haul aircraft with high endurance requirements, particularly in applications that demand safety. However, its charging efficiency is relatively low, and the current technology is still under development. Limited commercialization may affect its reliability and practicality.

2.6. Comparison of Battery Technologies

Based on Table 1, SSB has significant advantages in energy density. Due to their excellent performance and future potential, they are expected to become the optimal choice for aircraft batteries, capable of meeting the high demands for safety, endurance, and efficiency in future aviation transport.

There is a possibility of widespread application in the near future; however, improvements are still needed in terms of weight and charging speed.

On the other hand, LIBs have already matured in the market and exhibit strong applicability. Nevertheless, concerns regarding safety and resource availability still need to be addressed.

Energy Charging Battery Cycle Weight density Advantages Disadvantages speed life type (kg) (Wh/kg)(h) Mature The energy 500-LIBs Relatively density is still 1-5 150-250 technology, 1500 [7,8]light widely used insufficient High energy Commercial Relatively SSB [9] 300-500 density, high applications still 1000 +1-3 heavy safety face challenges Li-S Poor cycle High theoretical Relatively battery 600 < 300 stability and low 2-8 energy density light [10] efficiency High density, Not yet in use, A few **MIB** strong safety and 200-300 1000 +still in Light hours to a relatively low [12] development dozen cost Fast charging High cost, and discharging Relatively NB [11] 250-400 800 immature 0.5-2speed m, strong light technology stability

Table 1. Performance comparison of different batteries

3. Design Considerations for High Energy Density Batteries in Aviation

3.1. Weight and Energy Density Optimization

Improving battery energy density and lightweight design are two of the main challenges facing electric aviation. The current critical technological breakthroughs needed are as follows.

- i) Material limitations: The potential for increasing the energy density of existing battery materials is limited.
- ii) Thermal management: High energy density batteries tend to generate heat during charge and discharge cycles, necessitating effective thermal management systems to prevent overheating and ensure safety and performance stability.
- iii) Electrode design: The selection of electrode materials and their structural design directly affect the battery's energy density and cycle life, highlighting the need to explore new high-performance electrode materials.
- iv) Manufacturing costs: The implementation of new materials and technologies often comes with higher manufacturing costs. Finding ways to reduce costs while maintaining performance is an urgent issue that needs to be addressed.
- v) Lightweight materials: Utilizing high-strength, low-density materials, such as carbon fiber composites, aluminum alloys, and titanium alloys, can help reduce the structural weight of aircraft.

3.2. Safety and Thermal Management

Safety is a paramount consideration in the design of electric aircraft. The potential risks associated with high energy density batteries during operation include [13]: i) Overcharging and short circuits: Effective protective mechanisms must be designed to prevent safety incidents caused by battery overcharging or short circuits. ii) Thermal runaway: Measures should be implemented to reduce the

risk of thermal runaway, such as employing cooling systems or utilizing solid-state batteries to enhance safety. iii) Certification standards: The battery systems of electric aircraft must meet aviation safety standards, such as those set by the FAA and EASA, imposing stricter requirements on the design and manufacturing of batteries.

In response to the identified issues, this paper proposes the following design solutions [14]:

i) Passive thermal management system

Insulation materials: The use of high-efficiency insulation materials to encase the batteries is recommended in order to minimize the impact of external heat.

Heat dissipation structures: The design of heat sinks or thermal conductive plates is proposed to enhance heat dissipation efficiency by increasing the thermal contact area.

ii) Active thermal management system

A system utilizing a cooling fluid (such as water or a specialized coolant) is suggested to circulate through the batteries, effectively removing generated heat. In the air cooling system, the installation of fans around the batteries is recommended to increase airflow and facilitate heat dissipation.

iii) Temperature monitoring and control

Temperature sensors: The integration of multiple temperature sensors within the battery pack is advised for real-time monitoring of battery temperature.

Intelligent control system: An intelligent control system that combines sensor data to automatically adjust the operation of the cooling system is proposed, ensuring that the batteries operate within a safe temperature range.

3.3. Integration with Aircraft Systems

In the design of all-electric aircraft, the integration of batteries and system optimization are crucial. Several key aspects must be considered [15]: i) Battery layout: An optimal battery layout can lower the aircraft's center of gravity and enhance flight stability. Design considerations should include weight distribution and the positioning of the center of gravity. ii) Battery management system (BMS): An efficient battery management system is essential for real-time monitoring of battery status, including temperature, charging, and discharging conditions, thereby ensuring the safe and efficient operation of the batteries. iii) Compatibility with aeronautical systems: The battery system must be compatible with the aircraft's power systems, control systems, and other electronic systems to achieve optimal performance.

3.4. Environmental and Operational Challenges

The performance of batteries varies significantly under extremely low or high temperatures. Low temperatures can lead to reduced capacity and charging rates, necessitating heating measures by the Battery Management System (BMS). In contrast, high-temperature environments pose a risk of overheating, which can affect both safety and battery lifespan. Additionally, high humidity and low atmospheric pressure can impact the chemical reactions and electrolyte performance within the battery, potentially leading to decreased performance. Extreme conditions may also accelerate battery aging and degradation, thereby reducing its cycle life. Consequently, it is essential for the BMS to continuously monitor the health status of the battery and adjust operational strategies in real-time [16].

In extreme environments, charging strategies must incorporate temperature compensation to avoid rapid charging under low temperatures, which may lead to lithium plating or charging under high temperatures that could cause overheating. The discharging process should ensure that the battery operates within a safe range, avoiding deep discharges to extend its lifespan. During landing and taxiing, effective energy recovery strategies can enhance overall energy utilization efficiency [17].

4. Current All-Electric Aircraft Projects

In recent years, several all-electric aircraft projects have been launched, with notable successful cases including:

Eviation Alice, all-electric commuter aircraft, is equipped with high-energy-density lithium-ion batteries designed to meet the needs of zero-emission short-haul regional air travel [18]. It features three electric motors, delivering excellent performance and efficiency, with a planned range of 440 nautical miles and capacity for 9 passengers. Funding for the project has been secured through venture capital and government subsidies. Eviation has actively established partnerships with airlines and government agencies to promote project development.

Pipistrel Alpha Electro, this small electric training aircraft, utilizes an efficient electric motor and battery system and is already in use at several flight schools [19]. It employs high-energy-density lithium batteries, providing approximately 1 h of flight time. The electric power system incorporates a high-efficiency motor and an advanced battery management system, optimizing both performance and safety. Funding has been achieved through government grants and private investments, receiving positive market feedback amid growing interest in green aviation.

HyFlyer by Rolls-Royce and Tecnam is a collaborative project between Rolls-Royce and Tecnam aimed at testing the feasibility of electric aviation technology [20]. The initial phase utilizes a hybrid propulsion system, gradually transitioning to full electric. The project employs advanced lithium-sulfur battery technology to achieve higher energy density, enhancing the aircraft's capabilities.

5. Conclusion

This article explores innovations in battery chemistry, highlighting research advancements in lithium batteries, solid-state batteries, and lithium-sulfur batteries. These technological improvements are crucial for providing the necessary power for all-electric aircraft, enabling longer flight durations and higher payload capacities.

However, significant challenges remain in manufacturing and scalability. Existing production processes face limitations in cost and efficiency, which hinder the widespread adoption of high-energy-density batteries. Additionally, the sustainability of materials and environmental impacts must be considered during the design and manufacturing processes to meet the aviation industry's future demand for environmentally friendly solutions. While the market potential is substantial, there are notable barriers to adoption. On the one hand, airlines and manufacturers are increasingly interested in electric aircraft; on the other hand, insufficient infrastructure, regulatory uncertainties, and concerns regarding the safety of electric flights continue to pose challenges.

To promote the development of this emerging market, it is essential to enhance policy support, invest in infrastructure, and conduct public education to improve acceptance.

Key findings suggest that as battery technologies continue to advance, solid-state batteries are likely to become the primary choice for future all-electric aircraft, achieving higher operational efficiency and lower environmental impact. Looking ahead, research and development should focus on innovations in battery materials, optimization of manufacturing processes, and exploration of new battery architectures. This will not only drive the sustainable development of the aviation industry but also provide valuable insights for other transportation sectors.

The role of high-energy-density batteries in aviation cannot be underestimated. As technology matures and the market gradually opens, all-electric aircraft are expected to become an integral part of future air transport, contributing to the global aviation industry's low-carbon goals and making the future of aviation greener and brighter.

References

- [1] Moua Lilly, Julio Roa, Xie Yuanyuan, et al. Critical review of advancements and challenges of all-electric aviation. In International Conference on Transportation and Development 2020, 2020: 48-59.
- [2] Jayme Diego Benegas. Evaluation of the hybrid-electric aircraft project Airbus E-Fan X. Hamburg University of Applied Sciences, 2019.
- [3] Chen Wei and Shu Keng. Bring SOEs back for technological catch-up: COMAC and China's commercial aircraft industry. China Review, 2024, 24(2): 127-156.

- [4] Ge Lefei, Du Nan, Song Jiahe, et al. Advanced eechnology of switched reluctance machines in more electric aircraft: A review. IEEE Transactions on Power Electronics, 2024.
- [5] Ni Kai, Liu Yongjiang, Mei Zhanbo, et al. Electrical and electronic technologies in more-electric aircraft: A review. IEEE Access, 2019, 7: 76145-76166.
- [6] Finger D. Felix, Braun Carsten, Bil Cees, et al. Impact of battery performance on the initial sizing of hybrid-electric general aviation aircraft. Journal of Aerospace Engineering, 2020, 33(3): 04020007.
- [7] Armand Michel, Axmann Peter, Bresser Dominic, et al. Lithium-ion batteries—Current state of the art and anticipated developments. Journal of Power Sources, 2020, 479: 228708.
- [8] Hashemi Seyed Reza, Baghbadorani Afsoon Bahadoran, Esmaeeli Roja, et al. Machine learning-based model for lithium-ion batteries in BMS of electric/hybrid electric aircraft. International Journal of Energy Research, 2021, 45(4): 5747-5765.
- [9] Viggiano Rocco, Dornbusch Donald, Wu James, et al. Solid-state architecture batteries for enhanced rechargeability and safety for electric aircraft. Pacific Rim Meeting on Electrochemical and Solid State Science (PRiME), 2020, 2020.
- [10] Barke Alexander, Cistjakov Walter, Steckermeier Dominik, et al. Green batteries for clean skies: Sustainability assessment of lithium-sulfur all-solid-state batteries for electric aircraft. Journal of Industrial Ecology, 2023, 27(3): 795-810.
- [11] Papathakis Kurt V. Design and development of nano-electro fuel batteries and rim-driven motors for electrified aircraft applications. Armstrong Flight Research Center, 2021.
- [12] Medina Alejandro, Pérez-Vicente Carlos, Alcántara Ricardo, et al. Advancing towards a practical magnesium ion battery. Materials, 2021, 14(23): 7488.
- [13] Sripad Shashank, Bills Alexander and Viswanathan Venkatasubramanian. A review of safety considerations for batteries in aircraft with electric propulsion. MRS Bulletin, 2021, 46(5): 435-442.
- [14] Rahmani Amin, Mahdieh Dibaj and Mohammad Akrami. Recent advancements in battery thermal management systems for enhanced performance of Li-ion batteries: A comprehensive review. Batteries, 2024, 10(8): 265.
- [15] Tarhan Burak, Yetik Ozge and Karakoc Tahir Hikmet. Hybrid battery management system design for electric aircraft. Energy, 2021, 234: 121227.
- [16] Cho Yoka and Gabbar Hossam A.. Review of energy storage technologies in harsh environment. Safety in Extreme Environments, 2019, 1(1): 11-25.
- [17] Liang Yawen, Mouli Gautham Ram Chandra and Bauer Pavol. Charging technology for electric aircraft: State of the art, trends, and challenges. IEEE Transactions on Transportation Electrification, 2023.
- [18] Baumeister Stefan, Tatjana Krstić Simić, and Emir Ganić. Emissions reduction potentials in business aviation with electric aircraft. Transportation Research Part D: Transport and Environment, 2024, 136: 104415.
- [19] Retico Chiara. Preliminary design of a light aircraft's electrical propulsion system. The Polytechnic University of Milan, 2021.
- [20] Alvestad Kristin, Haug Sondre Opsal and Jikiun Sunniva Petersen. A study of the potential for sustainable aviation in Norway. Western Norway University of Applied Sciences, 2020.