Performance analysis of high-speed, low-power comparators

Chengze Du
Pennsylvania State University State College, United States
Corresponding author email: cfd5416@psu.edu

Abstract. This article mainly presents a summary of development of dynamic comparators and the optimization to conventional comparator in recent years. By comparing the design of two different comparators, the design method of less power consumption, high speed or small delay, and low input referred noise can be concluded. The Dynamic comparator is designed to have small delay and less power consumption compared with two-stage comparator. The dynamic-bias comparator spends less power for operation the circuit compared with double-tail comparator. The FIA comparator operates under the controlling of logic NOR gate.

Keywords: two-stage comparator, dynamic-bias comparator, FIA comparator

1. Introduction

The use of the comparator and its status is constantly improving with the development of technology. It is usually used in integrated biomedical systems and comparing the magnitude of the absolute value of two values. In generally, the working principle of the comparator is to input two analog inputs at the terminals of the comparator, and output a digital value, either 0 or 1, which is logic low or logic high, respectively. This is also known as ANALOG-TO-DIGITAL converters (ADCs).

The conventional dynamic comparator is called Strong-ARM comparator, which was the first class of dynamic comparator and used in many different area and field. There are some important features that Strong-ARM has, the positive feedback of the latch is strong enabling the fast decision; it does not consume static power; rail-to-rail output can be produced; input referred offset is small; and the input impedance, Z_{in}, is high. Basically, the architecture of Strong-ARM is to stack pre-amplifier and latch as shown in the Figure 1 [1].

However, as the requirements continue to increase, the size of each MOS transistor need to be reduced, so that the more devices can be embedded into the IC. [1]. What does Figure 2 show is that stacking the transistors can be mitigated by cascading the transistor using double-tail latch type comparator.

However, this double-tail comparator also has problem, which is the higher power consumption.
What does Figure 3 show is two-stage dynamic comparator. Each stage is charged by VDD. There are also several advantages of two-stage comparator, which provide a more adjustable compromise between speed and offset and reduced kickback noise, it is more suitable when the VDD is relatively low compared with conventional comparator [2].

However, only PMOS device is operating before the phase that OUTp and OUTn are charged to the threshold voltage of NMOS since NMOS is off when it is not reached to the threshold voltage. Therefore, the energy consumption and delay are high. [3]. What is shown in the Figure 4 is the waveform of two-stage comparator. It is included the CLK, OUTp, and OUTn voltages we have discussed above. Furthermore, it is included an extremely important parameter in comparator design, delay. This can be divided into two parts, t0 and t\text{\text{latch}}. Positive edge of CLK voltage to both OUTp and OUTn charged to the V\text{\text{tn}} is the period that t0 represents. What does t\text{\text{latch}} represent is the period from the end of t0 to the time when the Vi of the OUTp and OUTn reaches VDD/2, which can be observed when OUTp =0.7V and OUTn =0.1V, VDD is charged to 1.2V [3].

This paper is divided into five parts. The improvement design and comparative analysis of two-stage dynamic comparator will be introduced in Part II; that of double-tail comparator will be introduced in Part III; that of dynamic-bias will be introduced in Part IV. Part V will be the conclusion of this paper.

\begin{figure}
\centering
\includegraphics[width=\textwidth]{figs.png}
\caption{Fig.3. Two-stage comparator \hspace{2cm} Fig.5. Improvement design of two-stage comparator}
\caption{Fig.4. Waveform of Figure 3 design \hspace{2cm} Fig.6. Waveform of the design shown in Figure 5}
\end{figure}

2. Switch Separated Comparator

As shown in the Figure 5, the improvement design of two-stage comparator is presented. The old latching stage is replaced by using several cross-coupled pairs. The logic of this design is Bp and Bn will be charged to the VDD, M2, M3 will be turned off, M0, M1, M6 and M7 will be turned on when CLK is equal to zero. Node Dp and Dn will be discharged to ground passing through the M6 and M7.
Nodes OUT$_p$ and OUT$_n$ will be charged to VDD passing through the M0 and M1 [4]. This is a big changing relative to origin design.

As shown in the Figure 6, both OUP$_p$ and OUT$_n$ start with a relatively high voltages, which means NMOS is no longer to operate in the cut-off region during the period t_0. All of transistor can operate at the beginning, the comparison phase will be started faster. [3]. Moreover, t_{opm} is added into the chart. This parameter is the period from the positive edge of CLK to that of CLK1. [5].

Figure 7 shows the graph of $g_{m,eff}$ (total transconductance) of the traditional and improved comparators versus delay. Figure 8 shows that the graph of delay and power consumption versus width M2 and M3.

Transconductance of this device is larger, its delivering capability is greater. Therefore, having a large transconductance is necessary for the design. By observing Figure 7, it can be concluded that the total transconductance is the highest when the delay is roughly 230ps to 240ps. We are able to compare these two graphs to determine the best width of M2 and M3. By observing Figure 8, there is one option for the width which satisfies the range of delay, from 230ps to 240ps. Therefore, when widths of these two transistors are 0.75μm, $g_{m,eff}$ is the largest, so that the gain will be also the largest. And for the very significant factor, power consumption, when the widths are 0.75μm, the power consumption is relatively low, roughly 54.5μw.

By observing Figure 9 (a) and (c), it can be seen that when V_{cm} is between 0.8V and 1.2V, the delay and power consumption are relatively low, but our design ideas must also follow to make the whole circuit operate in a stable status, So V_{cm} ended up being between 0.9V to 1.1V is reasonable. Moreover, by observing the Figure 9 (e), the lines when V_{cm} not being between 0.9V to 1.1V can be ignored. As we can see, the lines which represent V_{cm} is 0.9V, 1.0V and 1.1V are close to each other, which means the delay is close to each other when V_{cm} is 0.9V to 1.1V, the circuit operate stable.

The way we choose for VDD is the same as we choose for V_{cm}. However, as shown in the Figure 9 (b) and (d), in the process of increasing VDD, its relationship with delay and power consumption is not the same as V_{cm} relationship with those. With the increasing of VDD, the delay is decreasing but the power consumption is increasing. Therefore, we cannot choose the best VDD to satisfy both delay and power consumption are low but make a compromise. Moreover, it is necessary to consider about the relationship between VDD and V_{cm}. They cannot be too close.

The whole circuit can be simulated when the V_{cm} is 0.9V to 1.1V and VDD is 1.0V to 1.2V. When we make the simulation, both increment of VDD and V_{cm} should be 0.02V in order to make 100 testcases. After the simulation, the best and reasonable VDD and V_{cm} for this circuit design can be got.
3. Dynamic Bias Comparator

As shown in the Figure 10, this circuit is designed to improve the double-tail comparator by adding a capacitor and another CLK input that is parallel with the capacitor. Since the conventional double-tail circuit needs to be charged and discharged every time it is turned on and off, so its power consumption will be very large [6]. As we discussed above, the improvement is to stabilize the pre-amplifier by adding this capacitor, C_{TAIL}, at the end of tail of comparator. The reason of connecting transistor M3b parallel to C_{TAIL} is to reset this capacitor to ground. During the reset phase, when the logic of CLK is equal to 0, so, D_{i+} and D_{i-} are pre-charged to VDD by connecting M4 and M5. The capacitor C_{TAIL} is used to discharge to the ground. M12 and M13 are used to reset the latch. M3b, M4, M5, M12, and M13 are reset transistors. During the comparison phase, when the logic of CLK is equal to 1, which is VDD, these reset transistor are turned off [7]. CLK input, which is M3a, and capacitor, CP, are both turned on so that the discharge of the drain nodes Di+ and Di- begins.
The Figure 11 shows the voltage of different parameters versus time. As we can see at Figure 11 (a), the voltage of drain node D_{i+} and D_{i-} start to decrease when t is roughly equal to 0.3ns, and it will ultimately drop to V_s. Thus, it should be recharge to 1.2V, which is V_{DD} next time, which will cause a big power consumption. So we can see the same parameters in Figure 11 (b), their voltages are no longer dropped to V_s. So next time during the charging phase, the voltage needed to be charged to V_{DD} will be small enough. Compared with the Figure 12 (a), it is clearer that the dynamic-bias design will not drop to zero volt with the time elapse, but the Elzakker will drop to zero volt. From Figure 12 (c), it indicates the current passing through the tail, for the dynamic-bias, the current will decrease to zero immediately after the comparing phase, but for the Elzakker, the current slowly decreases to zero. According to the formula of power with respect of voltage and current, the larger power consumption will be produced for Elzakker [4].

However, the problem of this dynamic-bias design is shown in the two bottom figures, which the delay of the circuit increases as power consumption decreases. For the Elzakker, the interval between the start of CLK and OUT+ is roughly 0.45ns, but for the dynamic-bias, the interval of that is roughly 0.7ns. This problem can be also observed in the Figure 12 (b).
The improvements of this dynamic-bias are not only lower power consumption, but also higher voltage gain, and lower input referred noise. As shown in the Figure 12 (d) and (e), voltage gain of dynamic-bias stays in very high, the input referred noise voltage of dynamic-bias stays in very low, compared to Elzakker.
From the Figure 12 (b), Dynamic-bias consistently consumes less energy than Elzakker no matter at what the common mode voltage, and that of dynamic-bias is very stable at $V_{cm} = 0.6V$ to 0.9V, which is a good improvement. By observing the (c) and (d), the delay of dynamic-bias is much larger than that of Elzakker when the $V_{cm} = 0.6V$, but if we increase the V_{cm} to 0.7V, the delay will be significantly reduced and very close to the delay of Elzakker at $V_{cm} = 0.7V$. However, by observing (a), it is easy to find out that the input referred noise will increase when the V_{cm} increases, which prevents us from arbitrarily increasing V_{cm} to meet the standard of lower delay. Therefore, we can make a trade-off between delay and input referred noise. The V_{cm} can be chosen from 0.6V to 0.75V with an added noise cost of 0.16mV. Thus, we can simulate and test the result of delay when V_{cm} is from 0.6V to 0.75V, the increasement of simulation is 0.0015V for getting 100 test cases [8].

4. Floating Inverter Comparator

As we discussed above, although the power consumption and input referred noise of dynamic-bias are much lower than the conventional double-tail design, its delay is much larger than the conventional design when the V_{cm} is 0.6V, and the VDD is 1.2V. The Figure 14 shows the circuit that is designed based on the dynamic-bias but make a improvement on delay.

The logic of circuit shown in the Figure 14 is similar to dynamic-bias. In the pre-amplifier stage, C_{RES} connected to VDD and GND are charged under the three-terminal NOR gate of CLK, D_{o-}, and D_{o+}. When the pre-amplifier needs to operate, the NOR gate is disconnected [9]. At this time, C_{RES} and the pre-amplifier are connected in parallel so that the pre-amplifier is not connected to the power supply and is charged by C_{RES}. Also there will be no static current passing through. In the latch stage, there is a transistor CLK connected to PMOS to stabilize [10].

![Fig.14. The improvement design of dynamic-bias](image)

As shown in the Figure 15, with the increasing of input V_{cm} of pre-amplifier, output common-mode voltage and gain are decreasing. By observing (b), the delay is larger than Strong-ARM when the input V_{cm} is from 0.6V to 0.8V, and the output V_{cm} and gain also have significant decline when $V_{i,cm}$ is from 0.6V to 0.8V. Moreover, by observing (c), the input referred noise does not have a obvious fluctuation when $V_{i,cm}$ is from 0.5V to 0.8V. Therefore, the reasonable range of input V_{cm} is from 0.45V to 0.55V.
Fig. 15. (a) Pre-amplifier $V_{x,cm}$ and gain versus input V_{cm}

(b) CLK-Q delay versus $V_{i,cm}$.

(c) Input referred noise versus $V_{i,cm}$.

Fig. 16. (a) CLK-Q delay

(b) FoM of the improved comparator versus the value of C_{RES}.

The variation of input offset of proposed comparator is 0.9mV, shown in the Figure 17, which is much smaller than that of Strong-ARM. This means that the proposed comparator operates more stable.
5. Conclusion

This paper concentrates on the optimization and reform method of comparator with consideration of three parameters, time delay, input referred noise, and power consumption. The first design optimizes the delay and reduces the power consumption of two-stage comparator by using the cross-couple method in latch stage. The second design is designed to solve the problem of power consumption of double-tail comparator by adding a CLK transistor and a capacitor, two parallel components, at the end of the tail, but delay is increased. This issue is solved in the third design by adding a CLK transistor connected to VDD in the latch stage and a capacitor controlled by a logic NOR gate with three different inputs. However, in the first reference paper, one of the most important parameters, input referred noise, is not mentioned and researched. Therefore, it is difficult to make the trade-off. Moreover, in the third reference paper, the comparator is designed based on the dynamic-bias comparator, but all of the simulations and measurements are compared to StrongARM comparator. Thus, it is difficult to directly observe the improvement of this design. It is necessary to simulate two comparators in the same condition. That is the what is going to do in the future researches.

References