Mechanism of Action and Impact of the New Coronavirus Vaccine

Hangyu Zhao

King's college school, Wimbledon, Hangzhou, China

* Corresponding author: Zhao.Hangyu@rkcshz.can

Abstract. A massive global health disaster caused by the novel coronavirus (COVID-19) pandemic has harmed millions of people and resulted in severe suffering and mortality. Since the COVID-19 epidemic, research into mRNA vaccines and therapies has expanded. To achieve disease preventive and treatment goals, mRNA vaccines entail injecting a synthetic mRNA sequence encoding protein antigen into the human body, instructing the body to express the right protein, and prompting the body to evoke a specific immune response. As a result, efforts have been launched around the world to develop a vaccine that can protect against the virus and halt its spread. The mode of action and effects of the novel coronavirus will be examined in this essay. The background, literature review, and research progress, motivation and research framework, case study, and influence on the human body will all be covered in the article. All of these are predicated on the mRNA relationship. Finally, the article will include a conclusion that summarizes the findings of the study as well as its limitations and future prospects.

Keywords: Covid vaccinations, mRNA, Advantages, Disadvantages.

1. Introduction

The new coronavirus (COVID-19) pandemic has caused a worldwide health calamity, infecting millions of people and inflicting widespread suffering and death. As a result, the entire world has come together to develop a vaccine that will protect people from the virus and prevent its spread. The new coronavirus vaccine is a crucial tool in the fight against COVID-19 and will play a vital role in bringing the pandemic to an end. There's this huge safety net, and there's a lot of leeway in mRNA selection. As a result, potentially dangerous genetic integration is eliminated. Many vaccine candidates are frequently tested before they are shown to be both safe and effective. For example, around seven vaccinations out of every hundred investigated in laboratories and tested on animals are declared eligible for human clinical trials. Only one in every five vaccines that enter clinical trials is successful. Developing a large number of different immunizations can increase the chances that one or more of them will be successful (that is, will prove safe and effective for the intended target population).

With the development of the COVID-19 pandemic, numerous studies on the mechanism of action and impact of the novel coronavirus vaccine have been conducted. These studies have indicated that vaccine works by creating an immunological response in the body, which aids in the prevention of the virus spreading and causing illness. The immunization has been shown to be exceedingly effective in preventing infection as well as minimizing the risk of hospitalization and mortality. A vaccination can be designed in one of three ways. The contrast between using the full virus or bacterium, just the microbial components that activate the immune system, or simply the genetic information that provides instructions for making specific proteins instead of the entire virus.

The initial approach of developing a vaccine is to utilize chemicals, heat, or radiation to inactivate or destroy the virus or bacteria that causes illness (or a very similar virus or bacteria). This strategy makes use of technology that has been demonstrated to be effective in humans and capable of generating vaccinations on a massive scale. It is also used to make influenza and polio vaccines. This process, however, requires special laboratory facilities to safely grow viruses or bacteria, may require a somewhat long production period, and may require two or three doses of inoculation. The second option is to utilize a live attenuated virus or a virus that is extremely similar to it. Vaccination against
measles, mumps, and rubella, as well as varicella and herpes zoster, fall into this group. This method, which is similar to inactivated vaccine technology, can be produced on a large scale. This immunization, however, may not be appropriate for persons with impaired immune systems. The third way of vaccine production uses a safe virus to deliver a specific component of the target microorganism (called protein) in order to stimulate an immune response without causing disease. To accomplish this, insert the instructions for creating specific portions of the target disease into a safe virus. After that, the safe virus can be used as a vehicle or platform to transport certain proteins into the human body. The immune system is then activated as a result of this protein. The Ebola vaccine is a viral vector vaccine that can be swiftly developed [1].

A vaccination to prevent new coronavirus infections has been developed in recent years. Vaccination can successfully prevent virus infection and minimize the risk of virus transmission. The vaccine, which acts as an antigen similar to the novel coronavirus, is designed to create specific antibodies against the antigen after being administered to humans. When the true virus invades, it will react with the previously generated antibody, allowing it to resist the infection [2].

There are two kinds of vaccine development: gene-based vaccine development and protein-based vaccine development. Protein-based strategies are conventional approaches of activating adaptive and humoral immune responses that use attenuated or recombinant proteins as immunogens. Gene-based vaccines are delivered to host cells via DNA or RNA vectors and expressed in host cells to produce antigens that trigger an immune response from the host. COVID-19 protein and gene vaccines (containing DNA and RNA) have been developed and are currently being tested in human clinical trials [3]. When the order is given, the mRNA is rapidly destroyed. It will never get into your nucleus, where your DNA is stored.

MRNA is used in both the Pfizer BioNTech and Moderna COVID-19 vaccines [4]. MRNA is endangered before it is ingested by cells by the rapid breakdown of ubiquitous extracellular ribonuclease. As a result, the molecule that protects RNA from degradation may have a substantial impact on the efficacy of mRNA vaccine. Complexation can also boost cell absorption and/or improve translation mechanism delivery in the cytoplasm. As a result, mRNA is frequently associated with lipids or polymers [5]. MRNA is a type of cell messenger. The DNA in the nucleus encodes genetic information that is used to make proteins. MRNA transports a copy of the genetic material beyond the nucleus to the cytoplasm, where it is translated into amino acids by ribosomes and subsequently folded into full proteins. MRNA is a short-lived molecule, which means it is easy to degrade and will not last for a long time in cells.

By injecting synthetic mRNA encoding the virus spike protein into cells, the mRNA vaccine can drive human cells to produce the viral spike protein and elicit an immune response even when no one has been exposed to the virus material. These virus spike proteins, or antigens, are frequently found on the virus's surface and are recognized by antibodies and other immune cells that prepare and defend the body against the virus. When a person is later exposed to the virus, antibodies and other components of the immune system can recognize and eliminate the virus before it infects healthy cells or causes disease [6].

The body's natural reaction. Antibodies to pathogen antigens exist in the body. Pathogens are bacteria, fungi, and viruses that can cause illness. Antibodies are a necessary component of the immune system. Each disease has a distinct antigen that must be addressed with a distinct antibody. When the vaccine is administered to a living body, the immune system targets and cures the COVID-19 that has never met, and the body develops a comparable antibody to eradicate the COVID-19 in the body. When COVID-19 occurs, the immune system in the body has recognized and remembered COVID-19's antigen, allowing the body to heal far faster than when COVID-19 first appeared [7].

The study approach used in this paper will be based on a thorough review of current research on the mechanism of action and impact of the novel coronavirus vaccine. The evaluation will contain a wide range of papers, including both clinical trials and observational data, to provide a complete understanding of the subject. The review will also cover the present research's strengths and weaknesses.
2. Case study

The case study in this paper will focus on the novel coronavirus vaccination and its impact on the human body. The investigation will focus on the vaccine's method of action and its impact on the body, such as its effectiveness in preventing infection, lowering the risk of hospitalization and mortality, and altering the immune system. The research will also give recommendations on how to use the vaccine and its role in putting an end to the COVID-19 outbreak.

The S protein gene sequence was linearized (bacteriophage promoter (T7) - 5'UTR - open reading frame (ORF) - 3' untranslated regions (UTR) - polyA), and the pre-mRNA 5'end was capped by in vitro transcription (IVT). Purification and sterilization are the next processes. Remove any enzymes, free nucleotides, leftover DNA and foreign RNA fragments, dsRNA, and immunogenic pollutants from the reaction system. Meet GMP production quality requirements [8]. The mRNA cap structure can limit immune response and boost translation; the 5'UTR is important in initial control; the 3'UTR is vital in translation efficiency and mRNA stability regulation; and the length of the poly(A) tail is related to translation efficiency and mRNA stability. The following are the primary methods of adding poly(A) tail when generating mRNA using IVT: First, enzymatic synthesis, with poly(A) polymerase from Escherichia coli added once mRNA transcription is completed. The second method is co-transcription, which is created by direct transcription of a poly(A) sequence that already exists on the template plasmid DNA or PCR product; the third method is to employ phi29 DNA polymerase to proliferate the plasmid in vitro by rolling ring amplification (RCA). Co-transcription and tailing can keep end products homogeneous, eliminate process stages, and save money, making it the preferable approach [9]. Some researchers devised a novel strategy and picked the segmented poly(A) co-transcription method, which has the potential to reduce polymer loss (A). According to the closed loop notion, each poly(A) binding protein PABP only takes up around 30 A, and a small amount of A between the two binding proteins acts as a spacer sequence. When the spacer region is replaced with alternative sequences, poly(A) has a lower rate of recombination deletion. Scientists have even built improved interval sequences by investigating the length and base preference of interval sequences. All of this points to the interval sequence design method being preferable.

For large-scale plasmid synthesis, mRNA plasmid is often prepared using the bacterial fermentation method. However, during the bacterial amplification process, the poly(A) tail of the plasmid carrying a long oligonucleotide sequence may shorten with the continuous expansion of the bacteria, and when the poly(A) sequence on the plasmid is greater than 120 bp, it is more likely to be unstable during the culture process and then lose and shorten, and under the condition of 30 °C culture, cell growth slows down and the copy number of the plasmid Production has been hampered by the decline in production. To that end, Azenta has created a new mRNA plasmid construction and preparation process that can stably produce mRNA plasmid with fixed length poly(A) tail, help customers in mRNA vaccine and drug research and development improve their mRNA plasmid production process, and ensure the safety of subsequent experiments [10].

3. The significance of vaccination

Vaccination is important because it allows the body to cleanse itself of infectious diseases or prevents infection post immunization. Immune preparations include both vaccines that have been artificially inoculated and specific immunological components that have been injected. Immunosuppressive vaccination's purpose is to instill specific immunity in the body, allowing it to clear itself of infectious diseases or avoid infection. Immunosuppressive medications encompass both active and passive immunological treatments. The antigen component of attenuated or sterilized pathogenic organisms and pathogenic organisms is the source of active immune preparations, while anti-epidemic factors such as antibody transfer factors and cells provided from outside are the source of passive immunity.

In terms of immunity, active immunity refers to long-term or lifelong protection, whereas passive immunity relates to short-term protection. The time has come to obtain immunity. Active immunity
takes time to provide protection. Passive immune preparatory immunity gives instant protection. The risk of active immune preparations is associated with live bacterial vaccine organisms, whereas serum illness is associated with passive immunity. Differentiation of immunological effects, active immune effect is favorable and can prevent disease. Passive immunological preparation cannot prevent the disease, although it can help relieve symptoms. Active immune preparations include inactivated vaccines, attenuated vaccines, attenuated live vaccinations, toxoids, subunit vaccines, polypeptide vaccines, genetic engineering vaccines, DNA vaccines, and combination vaccines. Passive immune preparations include immune serum, gamma globulin, and particular immunoglobulin [11].

There are several advantages of mRNA vaccines over the other vaccine. The first advantage of mRNA vaccines is their ease and speed of production. Once the immunogen sequence is available, RNA synthesis can begin immediately on the same platform, and the process can be easily scaled up and cell-free, requiring only minor platform changes during mRNA preparation and production. Second, mRNA vaccines rapidly express target proteins (antigens) following transfection via mRNA translation. mRNA vaccines are considerably more biosafe than DNA-based immunizations because antigen translation takes place in the cytoplasm rather than the nucleus. Third, unlike protein-based vaccines, mRNA vaccines are translated by host translation machinery and may thus produce an antigen that is similar to the protein structure encoded by the viral genome, including post-translational modifications.

There are several disadvantages of mRNA vaccines over the other vaccine. Firstly, because protein-based vaccinations can only be carried and maintained over short distances, mRNA vaccines are extremely temperature sensitive. The vaccination has been evaluated and can be used within 24 hours in room temperature. Second, if long distance transportation is required, the cost of transportation increases, causing an economic concern.

Vaccination options for COVID-19: First, persons with impaired immune systems may have a reduced immune response and protective impact following vaccination, which is potentially harmful. If they get other illnesses in the meantime, their bodies will suffer greatly. As a result, the paper proposes designing a one-of-a-kind vaccination for this population. Second, persons who have been vaccinated may become infected again, necessitating another dose of vaccine. The transportation and time costs, on the other hand, are irreparable losses. It is recommended that a more convenient vaccination be developed so that folks with limited time and energy can obtain the immunization whenever and wherever they choose during their free time. To avoid reinfection, add another vaccine or produce a more effective vaccine [12]. Third, boost vaccine capacity. It not only improves professional technical level and strengthens public health physician training, but it also includes the vaccination system and operation process, such as providing enough qualified vaccinators, equipment, necessary first aid drugs, and rescue equipment, carrying out standard vaccination notification, and making vaccinators feel at ease to vaccinate with adequate preparation. Additionally, to reach out to people who are unaware of the significance of immunization. Qualified health care workers can increase immunization success rates and avoid some anomalies. Also, to reach people who are unaware of the importance of immunization. Trained health care personnel can improve immunization success rates, avoid some aberrant data circumstances, and ensure vaccine credibility.

4. Conclusion

The new coronavirus vaccine is a crucial tool in the fight against COVID-19 and will play a vital role in bringing the pandemic to an end. This page addresses the onset of the epidemic and vaccine production, as well as the manufacturing process and basis of mRNA vaccine. The advantages and disadvantages of mRNA are also explored. Finally, future mRNA vaccine development is considered. The vaccine works by producing an immune reaction in the body, which aids in the prevention of virus spread and illness. The immunization has been shown to be exceedingly effective in preventing infection as well as minimizing the risk of hospitalization and mortality. However, the vaccine still has
limitations and barriers in its implementation, and more research is needed to fully understand its impact and maximize its benefits. To summarize, the novel coronavirus vaccine represents a big step forward in the fight against COVID-19 and offers hope for a better life. The vaccine's disadvantage is that enzymes are particularly sensitive to changes in pH and temperature, making it difficult to transfer the vaccine.

References
[8] Na-Na Zhang6, Xiao-Feng Li 1, Yong-Qiang Deng et al.