Emerging Treatments for Alzheimer's Disease

Zhenyi Zhao*

School of Chemistry, University of Birmingham, Birmingham, United Kingdom

* Corresponding author: zxz270@student.bham.ac.uk

Abstract. The treatment of Alzheimer's disease (AD), a complex neurodegenerative disorder, presents significant challenges. At the same time, addressing these challenges is essential for enhancing patient outcomes. In this paper, pharmacological and non-pharmacological treatments for AD in both current and emerging size are discussed. It discusses the implications of these treatments for AD patients and their families, as well as the potential societal impact of improved treatment. In addition, the author highlights challenges and opportunities in clinical trial design, regulatory and ethical considerations for emerging treatments, future directions for the treatment of AD, as well as the role of public health policies and research funding. Personalized medicine and combination therapies are indicating possible directions for the future of AD treatment. However, there are still challenges, such as the design of clinical trials, regulatory and ethical considerations, public health policies, and funding for research. Improvements in care and outcomes for people with AD still need some concerted efforts from healthcare providers, researchers, policymakers, and advocates.

Keywords: Alzheimer’s Disease, Emerging treatment.

1. Introduction

Nowadays, as the individual aged more than 65 years occupied some 15%-20% of the whole population [1]. Those dementias which deeply related to the factor of age be more and more focused recent years. And despite Alzheimer's Disease (AD) is status as the most prevalent and severe form of dementia, still has no very effective means to contain the disease.

AD is most prevalent form of dementia and neurodegenerative disorder [2]. Alzheimer's disease, which accounts for 3/4 to 4/5 of all cases of dementia, is a degenerative and irreversible brain condition [3]. With an estimated 50,000,000 people suffering from dementia worldwide, that figure is expected to rise to 82,000,000 in next 7 years and 152,000,000 in next 27 years as the world's population ages [3].

There are currently no known cures for AD, and available treatments merely alleviate symptoms. In recent years, however, significant advances have been made in the development of new Alzheimer's disease treatments. These treatments target the disease's underlying mechanisms, such as amyloid-β and tau protein accumulation, oxidative stress, and inflammation.

For instance, aducanumab and solanezumab are two examples of amyloid-beta-targeting monoclonal antibodies that have shown promise in reducing amyloid plaque buildup and halting cognitive decline in early-stage Alzheimer's disease [4,5]. Neuroprotective agents that target oxidative stress and inflammation, such as resveratrol and curcumin, and tau protein aggregation inhibitors, such as LMTX (Leuco-methylthionine bis (hydromethanesulfonate), are also promising new treatments [6,7].

This paper aims to provide an overview of the current Alzheimer's disease treatment landscape by discussing the efficacy, safety, and challenges of emerging therapies for the disease. The paper will also explore the future directions of Alzheimer's disease treatment and the implications for patients, caregivers, and healthcare professionals.

2. Current Treatments for Alzheimer's Disease

Alzheimer's disease is a neurodegenerative disorder with multifactorial pathophysiology and causes. Understanding the Alzheimer's disease risk factors, genetics, pathology, inflammation,
oxidative stress, and neuroimaging biomarkers is essential for developing effective treatments and interventions.

2.1. Alzheimer's disease susceptibility factors

Alzheimer's disease risk factors include but are not limited to age, family history, genetic mutations (such as the Apolipoprotein E gene), history of head trauma, cardiovascular risk factors (such as hypertension, diabetes, and high cholesterol), lifestyle factors (such as lack of physical activity, poor diet, and smoking), and environmental factors (such as exposure to air pollution) [8]. Identifying and addressing these risk factors may aid in Alzheimer's disease prevention or delay.

2.2. Genetics and familial risk factors for Alzheimer's

Inheritance plays a major role in AD, with specific gene mutations often linked to familial and early-onset cases. Mutations in presenilin 1, presenilin 2, and amyloid precursor protein have all been associated with FAD [9]. Understanding the genetic basis of AD can shed light on the disease's underlying mechanisms and potential treatment targets.

2.3. Alzheimer’s disease pathology, including amyloid plaques and tau tangles.

Amyloid-β protein plaques and neurofibrillary tangles made of abnormal tau protein are characteristic brain lesions of AD. The amassing of these proteins causes inflammation and contributes to the neurodegeneration seen in Alzheimer's disease [10]. Understanding the effect of amyloid plaques and tau tangles in the pathogenesis of AD is crucial for the creation of targeted therapeutic interventions.

2.4. Inflammation and oxidative stress as contributors to Alzheimer's disease

Oxidative stress and inflammation have been implicated as key players in the development of AD. The amassing of amyloid-β and the phosphorylation of tau are both made worse by neuroinflammation, which is exacerbated by microglial activation and pro-inflammatory cytokine release. [11]. In Alzheimer's disease, oxidative stress resulting from an imbalance between free radicals and antioxidant defence mechanisms causes cellular damage and neuronal dysfunction [12]. Targeting inflammation and oxidative stress pathways may provide potential Alzheimer's disease treatments.

2.5. Neuroimaging and biomarker research for Alzheimer's

Neuroimaging techniques, including cerebrospinal fluid (CSF), magnetic resonance imaging (MRI), and positron emission tomography (PET), biomarker studies, have contributed significantly to the diagnosis and monitoring of Alzheimer's disease. Detection of amyloid plaques and tau tangles in the brain is made possible by imaging biomarkers like amyloid PET and tau PET, which allow for early diagnosis and follow-up monitoring of disease progression. [13]. Alzheimer's disease can be diagnosed and its progression predicted using biomarkers in cerebrospinal fluid (CSF) such as amyloid-β and tau tangles. [14]. Humans can learn more about the disease and its causes if we combine data from neuroimaging and biomarker studies with clinical assessments.

3. Current Alzheimer's Disease Treatments

3.1. Pharmacological Treatments

Pharmaceutical cholinesterase inhibitors and NMDA receptor antagonists are the mainstays of Alzheimer's disease treatment. Cholinesterase inhibitors, such as donepezil, rivastigmine, and galantamine, work by preventing the breakdown of acetylcholine, a neurotransmitter critical to learning and memory [15]. NMDA receptor antagonists’ function by inhibiting the activity of the N-methyl-D-aspartate (NMDA) receptors, which responsible for both learning and regulation memory
 Depending on the severity of the disease, different dosages of these medications are typically prescribed, and they can cause side effects such as gastrointestinal problems, dizziness, and headache. The effectiveness and safety of pharmaceutical treatments for Alzheimer's disease have been the subject of numerous clinical trials and meta-analyses. Some patients with Alzheimer's disease have seen improvements in cognitive function, global functioning, and behavioral symptoms after taking cholinesterase inhibitors or NMDA receptor antagonists, as shown by these studies. However, results have been inconsistent, and not everyone may respond to these medications. In addition, research on the long-term benefits of these treatments is still ongoing.

3.2. Non-Pharmacological Treatments

Alzheimer's disease can be treated without the use of pharmaceuticals by focusing on non-pharmacological interventions, such as cognitive stimulation and physical activity. Cognitive stimulation programs, such as computer-based cognitive training, group-based activities, and reminiscence therapy, are designed to enhance memory, attention, and other cognitive functions. Physical exercise, including aerobic and resistance training, has been shown to promote brain health by enhancing cognitive function, mood, and daily activities. These non-pharmacological treatments can be used in conjunction with pharmacological treatments or as stand-alone interventions to improve the overall health of AD patients.

There is growing evidence that treatments that do not really involve drugs can improve memory and mood in people with Alzheimer's. Patients with mild to moderate symptoms of Alzheimer's disease benefit from cognitive stimulation programmes in terms of cognitive function, functional ability, and quality of life. Improvements in memory, outlook, and daily functioning have also been observed in Alzheimer's disease patients who engage in regular physical activity. Nonetheless, the optimal types, doses, and duration of these interventions are still being investigated, and additional research is required to better comprehend their long-term effects and optimal implementation strategies.

4. Emerging Alzheimer's Disease Treatments

4.1. Amyloid Pathology Objectives

4.1.1. Amyloid- (A) Production Reduction

One of the main goals of new treatments for Alzheimer's disease is to slow or stop the production of amyloid- (A), a toxic protein that builds up in AD patients' brains. This can be accomplished by using inhibitors that specifically target the enzyme--secretase, which is responsible for the production of A from its precursor protein. These inhibitors reduce the production of A by inhibiting the enzymatic activity of -secretase and -secretase. Several preclinical and clinical studies have demonstrated that these inhibitors can reduce A production, but more research is needed to determine their safety and efficacy in humans.

4.1.2. Reducing Aggregation of A

The defining feature of AD is the aggregation or clustering of A molecules, and emerging therapies are looking at ways to stop this from happening. To combat A aggregation, researchers are investigating the use of anti-A antibodies and small molecules that bind to A and prevent its aggregation. The goal of these therapies is to lessen the build-up of A plaques in the brain, which may in turn slow the development of Alzheimer's disease. Some of these emerging therapies have shown promise in preclinical studies, and their safety and efficacy are currently being evaluated in clinical trials.
4.1.3. Facilitating A Clearance

Facilitating the clearance or removal of A from the brain is another promising approach in emerging Alzheimer's disease treatments [21]. The brain has multiple mechanisms for clearing A, including enzyme degradation and immune system clearance [21]. However, Alzheimer's disease may impair these mechanisms and its pathways, leading to the amassing of A in the brain [21]. Researchers are investigating various strategies to improve A clearance, including immunotherapies that stimulate the immune system to clear A and strategies to increase the activity of A-degrading enzymes [21]. These emerging therapies aim to facilitate the elimination of A from the brain and possibly halt the progression of AD [21].

4.2. Neuro-Inflammatory Pathway

Alzheimer's disease has been linked to brain inflammation, making neuro-inflammatory pathway targeting a promising emerging treatment option. [22]. Accumulation of tau tangles is another characteristic pathology of AD, and it could be exacerbated by chronic inflammation in the brain, which activates immune cells and releases pro-inflammatory molecules. [22]. Emerging therapies targeting the neuro-inflammatory pathway aim to reduce brain inflammation by inhibiting inflammatory molecules, modulating immune responses, and promoting anti-inflammatory pathways [22]. These therapies have demonstrated promise in preclinical studies, and clinical trials are currently being conducted to determine their safety and efficacy in humans [22].

Alzheimer's disease has been linked to mitochondria, the cellular organelle responsible for producing energy, and there is a new approach to treating the disease that focuses on correcting mitochondrial dysfunction [23]. Mitochondrial dysfunction can lead to decreased energy production, increased oxidative stress, and neurodegeneration [23]. Emerging therapies that target mitochondrial dysfunction aim to improve mitochondrial function by boosting energy production, reducing oxidative stress, and protecting neurons from degeneration [23].

4.3. Other Approaches

Other emerging approaches for the treatment of AD include targeting other disease-related pathways as well as mechanisms. For instance, researchers are investigating the use of anti-tau antibodies to specifically target and eliminate tau tangles, abnormal clumps of tau protein that accumulate in the brains of AD patients [24]. In addition, therapies that aim to improve brain blood flow and vascular health, such as vasodilators and antiplatelet agents, are being investigated as potential Alzheimer's disease treatments [25]. In addition, approaches that focus on enhancing cognitive function and promoting brain health, such as cognitive training programmes, physical exercise, and lifestyle interventions, are gaining interest as potential strategies for Alzheimer's disease prevention or delay [26]. These approaches aim to optimise brain health and cognitive function via non-pharmacological means, and they may be combined with other emerging therapies for a multimodal treatment approach [26].

Emerging treatments for Alzheimer's disease show promise in preclinical and clinical studies, with a focus on targeting amyloid pathology, tau pathology, the neuroinflammatory pathway, and mitochondrial dysfunction, among other mechanisms. These treatments aim to reduce the accumulation of toxic proteins, promote their elimination, reduce inflammation, and enhance brain health. To determine their safety, efficacy, and long-term effects on humans, however, additional research is required. Understanding the underlying pathology of AD and developing novel treatment approaches may offer hope for the future management of this debilitating disease.

5. Obstacles and Future Treatment Directions for Alzheimer's

Alzheimer's disease is a complicated neurodegenerative dementia with numerous obstacles that must be overcome to improve patient outcomes. As knowledge about Alzheimer's disease expands,
new avenues of investigation and treatment will open. Some difficulties and potential new directions in Alzheimer's disease treatment include:

Clinical trial design obstacles and possibilities: It can be difficult to conduct clinical trials for Alzheimer's disease due to issues like patient recruitment and selection, placebo control, and endpoint measurements [24]. Recruitment of patients for clinical trials can be challenging due to the disease's heterogeneity and the need for participants to meet specific inclusion and exclusion criteria. In clinical trials, placebo control is frequently required, but in the context of neurodegenerative disease, delaying or withholding treatment may not be ethically acceptable. In addition, it can be difficult to identify appropriate endpoint measures that accurately reflect the efficacy of the treatment [24]. However, there are opportunities for innovation in trial design, such as incorporating precision medicine approaches that take an individual's genetic and biomarker profile into account and utilising novel outcome measures such as imaging or fluid biomarkers [27].

Emerging therapeutics from a regulatory and moral perspective: There are regulatory and ethical questions to be answered in the process of developing and approving new treatments for Alzheimer's disease. An essential part of making sure medicines is safe and effective is the job of regulatory agencies like the FDA in the United States. Potential treatments for Alzheimer's disease have two paths to faster FDA approval: the Breakthrough Therapy Designation and the Fast Track Designation [24]. However, there are also ethical concerns, such as ensuring participants' informed consent, respecting patient autonomy, and ensuring equitable access to emerging treatments [28]. It is challenging to find middle ground between regulatory needs and ethical concerns when developing and approving new treatments for Alzheimer's disease.

Future directions in the treatment of Alzheimer's disease There are promising future directions in the treatment of Alzheimer's disease that have the potential to improve patient outcomes. Personalized medicine, for instance, seeks to customise treatments based on an individual's unique characteristics, such as genetic profile, biomarker status, and clinical presentation [29]. This approach may permit more targeted and effective treatments tailored to the specific needs of an individual. The use of combination therapies that attack the pathology of Alzheimer's disease from multiple angles at once also holds promise as a future treatment [30]. Combining different treatment modalities, such as pharmacological, non-pharmacological, and lifestyle interventions, may have a synergistic effect and improve the overall efficacy of treatment.

Public health policies and research funding are crucial to the development of Alzheimer's disease treatment. The development and availability of treatments for Alzheimer's disease must be accelerated through increased funding for research, supportive policies, and advocacy efforts. The disease can be better managed if public health policies promote early detection, diagnosis, and access to appropriate treatment. Adequate funding for research and clinical trials is essential for fostering innovation and developing new Alzheimer's disease treatment strategies [31].

6. Conclusion

Alzheimer's disease (AD) is a progressive neurological condition with complex diagnostic, therapeutic, and management challenges. This article discusses current treatments for Alzheimer's disease, including pharmacological interventions like cholinesterase inhibitors, receptor antagonists of NMDA and non-pharmacological approaches like cognitive stimulation and physical exercise. There is a lot of hope that in the coming years, we'll be able to treat AD with new therapies that focus on amyloid pathology, tau pathology, neuro-inflammatory pathways, and mitochondrial dysfunction. Both the patients and their loved ones are profoundly impacted by Alzheimer's disease. By slowing or halting the disease's progression, relieving symptoms, and fostering wellness, better treatments for AD have the possibility of improving patients' quality of life. Better treatments can also benefit the family members and carers of Alzheimer's disease patients by easing the burden of caregiving and enhancing the overall care and support for their family members. On the other hand, enhanced Alzheimer's disease treatment also has the potential to have a significant societal impact. Alzheimer's
disease is predicted to become a greater financial, social, and administrative burden as the world's population ages. In addition to improving disease management and lowering healthcare costs, developing effective treatments for AD would improve the quality of life for patients and their families. Additional research, innovation, and economic growth in the field of neurodegenerative diseases may be prompted by successes in AD treatment. In conclusion, even though AD presents complex challenges, research is ongoing and effective treatments are being developed. With continued research, clinical trials, and policy initiatives, there is hope for improved Alzheimer's disease management and treatment in the future, which could have significant implications for individuals, families, and society.

References


