Advancement In Neuroplasticity Trainings in Multiple Fields Since 2018

Authors

  • Jonathan Yang

DOI:

https://doi.org/10.54097/2r7be810

Keywords:

Neuroplasticity, Training, Motor, Auditory

Abstract

Neuroplasticity training is a rapidly growing practice that has great potential in the treatment of neurological diseases and disorders. This review aims to discuss the advancements in neuroplastic training in the form of motor, auditory, and other training methods. Neuroplastic training has seen promising results in patients encompassing a wide range of ages and conditions. Improvements in parameters such as executive function, gray & white matter, neuronal connectivity, neuron excitation, mini mental state examination (MMSE) score, activities of daily living (ADL) score, and others were observed.  The training methods and results are summarized and organized into a table in the review.

Downloads

Download data is not yet available.

References

Hogan, M. K., Hamilton, G. F., & Horner, P. J. (2020). Neural Stimulation and Molecular Mechanisms of Plasticity and Regeneration: A Review. Frontiers in Cellular Neuroscience, 14. https://www.frontiersin.org/articles/10.3389/fncel.2020.00271

Green, C. S., & Bavelier, D. (2008). Exercising Your Brain: A Review of Human Brain Plasticity and Training-Induced Learning. Psychology and Aging, 23(4), 692–701. https://doi.org/10.1037/a0014345

Pardridge, W. M. (2012). Drug transport across the blood–brain barrier. Journal of Cerebral Blood Flow & Metabolism, 32(11), 1959–1972. https://doi.org/10.1038/jcbfm.2012.126

Ball, M. J. (1984). The Morphological Basis of Dementia in Parkinson’s Disease. Canadian Journal of Neurological Sciences, 11(S1), 180–184. https://doi.org/10.1017/S0317167100046370

Long, J. M., & Holtzman, D. M. (2019). Alzheimer Disease: An Update on Pathobiology and Treatment Strategies. Cell, 179(2), 312–339. https://doi.org/10.1016/j.cell.2019.09.001

Abuse, N. I. on D. (--). Drugs and the Brain. National Institute on Drug Abuse. https://nida.nih.gov/publications/drugs-brains-behavior-science-addiction/drugs-brain

Hilderley, A. J., Wright, F. V., Taylor, M. J., Chen, J. L., & Fehlings, D. (2023). Functional Neuroplasticity and Motor Skill Change Following Gross Motor Interventions for Children With Diplegic Cerebral Palsy. Neurorehabilitation and Neural Repair, 37(1), 16–26. https://doi.org/10.1177/15459683221143503

Huang, C.-Y., Chiang, W.-C., Yeh, Y.-C., Fan, S.-C., Yang, W.-H., Kuo, H.-C., & Li, P.-C. (2022). Effects of virtual reality-based motor control training on inflammation, oxidative stress, neuroplasticity and upper limb motor function in patients with chronic stroke: A randomized controlled trial. BMC Neurology, 22(1), 21. https://doi.org/10.1186/s12883-021-02547-4

Mendez Colmenares, A., Voss, M. W., Fanning, J., Salerno, E. A., Gothe, N. P., Thomas, M. L., McAuley, E., Kramer, A. F., & Burzynska, A. Z. (2021). White matter plasticity in healthy older adults: The effects of aerobic exercise. NeuroImage, 239, 118305. https://doi.org/10.1016/j.neuroimage.2021.118305

Kopelman, J., Keller, T. A., Panny, B., Griffo, A., Degutis, M., Spotts, C., Cruz, N., Bell, E., Do-Nguyen, K., Wallace, M. L., Mathew, S. J., Howland, R. H., & Price, R. B. (2023). Rapid neuroplasticity changes and response to intravenous ketamine: A randomized controlled trial in treatment-resistant depression. Translational Psychiatry, 13(1), 159. https://doi.org/10.1038/s41398-023-02451-0

Mahncke, H. W., DeGutis, J., Levin, H., Newsome, M. R., Bell, M. D., Grills, C., French, L. M., Sullivan, K. W., Kim, S.-J., Rose, A., Stasio, C., & Merzenich, M. M. (2021). A randomized clinical trial of plasticity-based cognitive training in mild traumatic brain injury. Brain: A Journal of Neurology, 144(7), 1994–2008. https://doi.org/10.1093/brain/awab202

Singh, N., Saini, M., Kumar, N., Srivastava, M. V. P., & Mehndiratta, A. (2021). Evidence of neuroplasticity with robotic hand exoskeleton for post-stroke rehabilitation: A randomized controlled trial. Journal of Neuroengineering and Rehabilitation, 18(1), 76. https://doi.org/10.1186/s12984-021-00867-7

Silva-Batista, C., de Lima-Pardini, A. C., Nucci, M. P., Coelho, D. B., Batista, A., Piemonte, M. E. P., Barbosa, E. R., Teixeira, L. A., Corcos, D. M., Amaro, E., Horak, F. B., & Ugrinowitsch, C. (2020). A Randomized, Controlled Trial of Exercise for Parkinsonian Individuals With Freezing of Gait. Movement Disorders: Official Journal of the Movement Disorder Society, 35(9), 1607–1617. https://doi.org/10.1002/mds.28128

Du, J., Yang, F., Hu, J., Hu, J., Xu, Q., Cong, N., Zhang, Q., Liu, L., Mantini, D., Zhang, Z., Lu, G., & Liu, X. (2019). Effects of high- and low-frequency repetitive transcranial magnetic stimulation on motor recovery in early stroke patients: Evidence from a randomized controlled trial with clinical, neurophysiological and functional imaging assessments. NeuroImage. Clinical, 21, 101620. https://doi.org/10.1016/j.nicl.2018.101620

Sihvonen, A. J., Pitkäniemi, A., Leo, V., Soinila, S., & Särkämö, T. (2021). Resting-state language network neuroplasticity in post-stroke music listening: A randomized controlled trial. The European Journal of Neuroscience, 54(11), 7886–7898. https://doi.org/10.1111/ejn.15524

Developmental Language Disorder | NIDCD. (2023, May 8). https://www.nidcd.nih.gov/health/developmental-language-disorder

Hordacre, B., Moezzi, B., & Ridding, M. C. (2018). Neuroplasticity and network connectivity of the motor cortex following stroke: A transcranial direct current stimulation study. Human Brain Mapping, 39(8), 3326–3339. https://doi.org/10.1002/hbm.24079

Ozen, S., Senlikci, H. B., Guzel, S., & Yemisci, O. U. (2021). Computer Game Assisted Task Specific Exercises in the Treatment of Motor and Cognitive Function and Quality of Life in Stroke: A Randomized Control Study. Journal of Stroke and Cerebrovascular Diseases: The Official Journal of National Stroke Association, 30(9), 105991. https://doi.org/10.1016/j.jstrokecerebrovasdis.2021.105991

Araneda, R., Sizonenko, S. V., Newman, C. J., Dinomais, M., Le Gal, G., Nowak, E., Guzzetta, A., Riquelme, I., Brochard, S., Bleyenheuft, Y., & Early HABIT-ILE group. (2020). Functional, neuroplastic and biomechanical changes induced by early Hand-Arm Bimanual Intensive Therapy Including Lower Extremities (e-HABIT-ILE) in pre-school children with unilateral cerebral palsy: Study protocol of a randomized control trial. BMC Neurology, 20(1), 133. https://doi.org/10.1186/s12883-020-01705-4

Blumen, H. M., Ayers, E., Wang, C., Ambrose, A. F., & Verghese, J. (2020). A social dancing pilot intervention for older adults at high risk for Alzheimer’s disease and related dementias. Neurodegenerative Disease Management, 10(4), 183–194. https://doi.org/10.2217/nmt-2020-0002

James, C. E., Altenmüller, E., Kliegel, M., Krüger, T. H. C., Van De Ville, D., Worschech, F., Abdili, L., Scholz, D. S., Jünemann, K., Hering, A., Grouiller, F., Sinke, C., & Marie, D. (2020). Train the brain with music (TBM): Brain plasticity and cognitive benefits induced by musical training in elderly people in Germany and Switzerland, a study protocol for an RCT comparing musical instrumental practice to sensitization to music. BMC Geriatrics, 20(1), 418. https://doi.org/10.1186/s12877-020-01761-y

Sihvonen, A. J., Leo, V., Ripollés, P., Lehtovaara, T., Ylönen, A., Rajanaro, P., Laitinen, S., Forsblom, A., Saunavaara, J., Autti, T., Laine, M., Rodríguez-Fornells, A., Tervaniemi, M., Soinila, S., & Särkämö, T. (2020). Vocal music enhances memory and language recovery after stroke: Pooled results from two RCTs. Annals of Clinical and Translational Neurology, 7(11), 2272–2287. https://doi.org/10.1002/acn3.51217

Siponkoski, S.-T., Martínez-Molina, N., Kuusela, L., Laitinen, S., Holma, M., Ahlfors, M., Jordan-Kilkki, P., Ala-Kauhaluoma, K., Melkas, S., Pekkola, J., Rodriguez-Fornells, A., Laine, M., Ylinen, A., Rantanen, P., Koskinen, S., Lipsanen, J., & Särkämö, T. (2020). Music Therapy Enhances Executive Functions and Prefrontal Structural Neuroplasticity after Traumatic Brain Injury: Evidence from a Randomized Controlled Trial. Journal of Neurotrauma, 37(4), 618–634. https://doi.org/10.1089/neu.2019.6413

Zilberman-Itskovich, S., Catalogna, M., Sasson, E., Elman-Shina, K., Hadanny, A., Lang, E., Finci, S., Polak, N., Fishlev, G., Korin, C., Shorer, R., Parag, Y., Sova, M., & Efrati, S. (2022). Hyperbaric oxygen therapy improves neurocognitive functions and symptoms of post-COVID condition: Randomized controlled trial. Scientific Reports, 12(1), 11252. https://doi.org/10.1038/s41598-022-15565-0

Rahayu, U. B., Wibowo, S., Setyopranoto, I., & Hibatullah Romli, M. (2020). Effectiveness of physiotherapy interventions in brain plasticity, balance and functional ability in stroke survivors: A randomized controlled trial. NeuroRehabilitation, 47(4), 463–470. https://doi.org/10.3233/NRE-203210

Schmitter, M., Spijker, J., Smit, F., Tendolkar, I., Derksen, A.-M., Oostelbos, P., Wijnen, B. F. M., van Doesum, T. J., Smits, J. A. J., & Vrijsen, J. N. (2020). Exercise enhances: Study protocol of a randomized controlled trial on aerobic exercise as depression treatment augmentation. BMC Psychiatry, 20(1), 585. https://doi.org/10.1186/s12888-020-02989-z

Condliffe, E. G., Jeffery, D. T., Emery, D. J., Treit, S., Beaulieu, C., & Gorassini, M. A. (2019). Full Activation Profiles and Integrity of Corticospinal Pathways in Adults With Bilateral Spastic Cerebral Palsy. Neurorehabilitation and Neural Repair, 33(1), 59–69. https://doi.org/10.1177/1545968318818898

Seghier, M. L. (2008). Laterality index in functional MRI: Methodological issues. Magnetic Resonance Imaging, 26(5), 594–601. https://doi.org/10.1016/j.mri.2007.10.010

Inguaggiato, E., Sgandurra, G., Perazza, S., Guzzetta, A., & Cioni, G. (2013). Brain Reorganization following Intervention in Children with Congenital Hemiplegia: A Systematic Review. Neural Plasticity, 2013, e356275. https://doi.org/10.1155/2013/356275

Sutcliffe, T. L., Gaetz, W. C., Logan, W. J., Cheyne, D. O., & Fehlings, D. L. (2007). Cortical Reorganization After Modified Constraint-Induced Movement Therapy in Pediatric Hemiplegic Cerebral Palsy. Journal of Child Neurology, 22(11), 1281–1287. https://doi.org/10.1177/0883073807307084

Walther, M., Juenger, H., Kuhnke, N., Wilke, M., Brodbeck, V., Berweck, S., Staudt, M., & Mall, V. (2009). Motor Cortex Plasticity in Ischemic Perinatal Stroke: A Transcranial Magnetic Stimulation and Functional MRI Study. Pediatric Neurology, 41(3), 171–178. https://doi.org/10.1016/j.pediatrneurol.2009.04.006

Effects of Stroke. (2022, December 22). https://www.hopkinsmedicine.org/health/conditions-and-diseases/stroke/effects-of-stroke

Hypertonia. (n.d.). National Institute of Neurological Disorders and Stroke. Retrieved September 15, 2023, from https://www.ninds.nih.gov/health-information/disorders/hypertonia

Stroke Recovery Timeline. (2022, October 31). https://www.hopkinsmedicine.org/health/conditions-and-diseases/stroke/stroke-recovery-timeline

Speech & Language. (n.d.). Memory and Aging Center. Retrieved September 15, 2023, from https://memory.ucsf.edu/symptoms/speech-language

Bagattini, C., Zanni, M., Barocco, F., Caffarra, P., Brignani, D., Miniussi, C., & Defanti, C. A. (2020). Enhancing cognitive training effects in Alzheimer’s disease: rTMS as an add-on treatment. Brain Stimulation, 13(6), 1655–1664. https://doi.org/10.1016/j.brs.2020.09.010

Nguyen, L., Murphy, K., & Andrews, G. (2019). Cognitive and neural plasticity in old age: A systematic review of evidence from executive functions cognitive training. Ageing Research Reviews, 53, 100912. https://doi.org/10.1016/j.arr.2019.100912

Rogge, A.-K., Röder, B., Zech, A., & Hötting, K. (2018). Exercise-induced neuroplasticity: Balance training increases cortical thickness in visual and vestibular cortical regions. NeuroImage, 179, 471–479. https://doi.org/10.1016/j.neuroimage.2018.06.065

Rogowsky, B., Papamichalis, P., Villa, L., Heim, S., & Tallal, P. (2013). Neuroplasticity-Based Cognitive and Linguistic Skills Training Improves Reading and Writing Skills in College Students. Frontiers in Psychology, 4. https://www.frontiersin.org/articles/10.3389/fpsyg.2013.00137

Sutcliffe, T. L., Logan, W. J., & Fehlings, D. L. (2009). Pediatric Constraint-Induced Movement Therapy Is Associated with Increased Contralateral Cortical Activity on Functional Magnetic Resonance Imaging. Journal of Child Neurology, 24(10), 1230–1235. https://doi.org/10.1177/0883073809341268

Voss, P., Thomas, M. E., Cisneros-Franco, J. M., & de Villers-Sidani, É. (2017). Dynamic Brains and the Changing Rules of Neuroplasticity: Implications for Learning and Recovery. Frontiers in Psychology, 8, 1657. https://doi.org/10.3389/fpsyg.2017.01657

Wittenberg, G. F. (2009). Motor mapping in cerebral palsy. Developmental Medicine & Child Neurology, 51(s4), 134–139. https://doi.org/10.1111/j.1469-8749.2009.03426.x

Downloads

Published

29-12-2023

How to Cite

Yang, J. (2023). Advancement In Neuroplasticity Trainings in Multiple Fields Since 2018. Highlights in Science, Engineering and Technology, 74, 1017-1026. https://doi.org/10.54097/2r7be810