Probiotics: common genera, mechanisms, current phase and the future
DOI:
https://doi.org/10.54097/gajke929Keywords:
Probiotics, gut microbiota, immune modulation, shorty-chain fatty acids.Abstract
Probiotics are live microorganisms that confer health benefits to the host when administered in adequate amounts. This review provides an introduction to the current probiotics field, including their isolation and engineering, some common genera, their actions, and their applications in industry and public. We discuss the source of isolation and techniques in engineering probiotics, their role in modulating gut health, evidences of their application in treating gastrointestinal disorders, and slightly covers their application outside of human. We also discussed their actions on gut microbiota, epithelial environment, and human gut-brain axis. Finally, we address the limitation of current probiotic products and their application, and brings up the future research directions in this field. The purpose of this paper is to provide an introductory review on the current probiotic field.
Downloads
References
Guinane, C. M., & Cotter, P. D. (2013). Role of the gut microbiota in health and chronic gastrointestinal disease: understanding a hidden metabolic organ. Therapeutic advances in gastroenterology, 6(4), 295–308. https://doi.org/10.1177/1756283X13482996
Zheng, D., Liwinski, T., & Elinav, E. (2020). Interaction between microbiota and immunity in health and disease. Cell research, 30(6), 492–506. https://doi.org/10.1038/s41422-020-0332-7
Takiishi, T., Fenero, C. I. M., & Câmara, N. O. S. (2017). Intestinal barrier and gut microbiota: Shaping our immune responses throughout life. Tissue barriers, 5(4), e1373208. https://doi.org/10.1080/21688370.2017.1373208
Grice, E. A., & Segre, J. A. (2012). The human microbiome: our second genome. Annual review of genomics and human genetics, 13, 151–170. https://doi.org/10.1146/annurev-genom-090711-163814
Li, P., Gu, Q., Yang, L., Yu, Y., & Wang, Y. (2017). Characterization of extracellular vitamin B12 producing Lactobacillus plantarum strains and assessment of the probiotic potentials. Food chemistry, 234, 494–501. https://doi.org/10.1016/j.foodchem.2017.05.037
Zempleni, J., Hassan, Y. I., & Wijeratne, S. S. (2008). Biotin and biotinidase deficiency. Expert review of endocrinology & metabolism, 3(6), 715–724. https://doi.org/10.1586/17446651.3.6.715
Wald N. J. (2022). Folic acid and neural tube defects: Discovery, debate and the need for policy change. Journal of medical screening, 29(3), 138–146. https://doi.org/10.1177/09691413221102321
Kechagia, M., Basoulis, D., Konstantopoulou, S., Dimitriadi, D., Gyftopoulou, K., Skarmoutsou, N., & Fakiri, E. M. (2013). Health benefits of probiotics: a review. ISRN nutrition, 2013, 481651. https://doi.org/10.5402/2013/481651
Gilliland, S. E., & Walker, D. K. (1990). Factors to consider when selecting a culture of Lactobacillus acidophilus as a dietary adjunct to produce a hypocholesterolemic effect in humans. Journal of dairy science, 73(4), 905–911. https://doi.org/10.3168/jds.S0022-0302(90)78747-4
Pakdaman, M. N., Udani, J. K., Molina, J. P., & Shahani, M. (2016). The effects of the DDS-1 strain of lactobacillus on symptomatic relief for lactose intolerance - a randomized, double-blind, placebo-controlled, crossover clinical trial. Nutrition journal, 15(1), 56. https://doi.org/10.1186/s12937-016-0172-y
Amdekar, S., Singh, V., Kumar, A., Sharma, P., & Singh, R. (2013). Lactobacillus casei and Lactobacillus acidophilus regulate inflammatory pathway and improve antioxidant status in collagen-induced arthritic rats. Journal of interferon & cytokine research : the official journal of the International Society for Interferon and Cytokine Research, 33(1), 1–8. https://doi.org/10.1089/jir.2012.0034
Castagliuolo, I., LaMont, J. T., Nikulasson, S. T., & Pothoulakis, C. (1996). Saccharomyces boulardii protease inhibits Clostridium difficile toxin A effects in the rat ileum. Infection and immunity, 64(12), 5225–5232. https://doi.org/10.1128/iai.64.12.5225-5232.1996
Ozkan, T. B., Sahin, E., Erdemir, G., & Budak, F. (2007). Effect of Saccharomyces boulardii in children with acute gastroenteritis and its relationship to the immune response. The Journal of international medical research, 35(2), 201–212. https://doi.org/10.1177/147323000703500204
Wu, X., Vallance, B. A., Boyer, L., Bergstrom, K. S., Walker, J., Madsen, K., O'Kusky, J. R., Buchan, A. M., & Jacobson, K. (2008). Saccharomyces boulardii ameliorates Citrobacter rodentium-induced colitis through actions on bacterial virulence factors. American journal of physiology. Gastrointestinal and liver physiology, 294(1), G295–G306. https://doi.org/10.1152/ajpgi.00173.2007
Zaouche, A., Loukil, C., De Lagausie, P., Peuchmaur, M., Macry, J., Fitoussi, F., Bernasconi, P., Bingen, E., & Cezard, J. P. (2000). Effects of oral Saccharomyces boulardii on bacterial overgrowth, translocation, and intestinal adaptation after small-bowel resection in rats. Scandinavian journal of gastroenterology, 35(2), 160–165. https://doi.org/10.1080/003655200750024326
Syngai, G. G., Gopi, R., Bharali, R., Dey, S., Lakshmanan, G. M., & Ahmed, G. (2016). Probiotics - the versatile functional food ingredients. Journal of food science and technology, 53(2), 921–933. https://doi.org/10.1007/s13197-015-2011-0
Wang, Y., Yang, X., & Li, L. (2020). A new style of fermented tofu by Lactobacillus casei combined with salt coagulant. 3 Biotech, 10(2), 81. https://doi.org/10.1007/s13205-019-2040-x
Haghshenas, B., Nami, Y., Almasi, A., Abdullah, N., Radiah, D., Rosli, R., Barzegari, A., & Khosroushahi, A. Y. (2017). Isolation and characterization of probiotics from dairies. Iranian journal of microbiology, 9(4), 234–243
Siragusa, S., De Angelis, M., Calasso, M., Campanella, D., Minervini, F., Di Cagno, R., & Gobbetti, M. (2014). Fermentation and proteome profiles of Lactobacillus plantarum strains during growth under food-like conditions. Journal of proteomics, 96, 366–380. https://doi.org/10.1016/j.jprot.2013.11.003
Chen, J., Cai, W., & Feng, Y. (2007). Development of intestinal bifidobacteria and lactobacilli in breast-fed neonates. Clinical nutrition (Edinburgh, Scotland), 26(5), 559–566. https://doi.org/10.1016/j.clnu.2007.03.003
Parapouli, M., Vasileiadis, A., Afendra, A. S., & Hatziloukas, E. (2020). Saccharomyces cerevisiae and its industrial applications. AIMS microbiology, 6(1), 1–31. https://doi.org/10.3934/microbiol.2020001
Catinean, A., Neag, A. M., Nita, A., Buzea, M., & Buzoianu, A. D. (2019). Bacillus spp. Spores-A Promising Treatment Option for Patients with Irritable Bowel Syndrome. Nutrients, 11(9), 1968. https://doi.org/10.3390/nu11091968
Scaldaferri, F., Gerardi, V., Mangiola, F., Lopetuso, L. R., Pizzoferrato, M., Petito, V., Papa, A., Stojanovic, J., Poscia, A., Cammarota, G., & Gasbarrini, A. (2016). Role and mechanisms of action of Escherichia coli Nissle 1917 in the maintenance of remission in ulcerative colitis patients: An update. World journal of gastroenterology, 22(24), 5505–5511.
Behnsen, J., Deriu, E., Sassone-Corsi, M., & Raffatellu, M. (2013). Probiotics: properties, examples, and specific applications. Cold Spring Harbor perspectives in medicine, 3(3), a010074. https://doi.org/10.1101/cshperspect.a010074
Nami, Y., Haghshenas, B., Haghshenas, M., & Yari Khosroushahi, A. (2015). Antimicrobial activity and the presence of virulence factors and bacteriocin structural genes in Enterococcus faecium CM33 isolated from ewe colostrum. Frontiers in microbiology, 6, 782. https://doi.org/10.3389/fmicb.2015.00782
Niu, C., Yu, D., Wang, Y., Ren, H., Jin, Y., Zhou, W., Li, B., Cheng, Y., Yue, J., Gao, Z., & Liang, L. (2013). Common and pathogen-specific virulence factors are different in function and structure. Virulence, 4(6), 473–482. https://doi.org/10.4161/viru.25730
Kim, H. K., Emolo, C., DeDent, A. C., Falugi, F., Missiakas, D. M., & Schneewind, O. (2012). Protein A-specific monoclonal antibodies and prevention of Staphylococcus aureus disease in mice. Infection and immunity, 80(10), 3460–3470. https://doi.org/10.1128/IAI.00230-12
Sazonova, I. Y., Houng, A. K., Chowdhry, S. A., Robinson, B. R., Hedstrom, L., & Reed, G. L. (2001). The mechanism of a bacterial plasminogen activator intermediate between streptokinase and staphylokinase. The Journal of biological chemistry, 276(16), 12609–12613. https://doi.org/10.1074/jbc.M009265200
Naissinger da Silva, M., Tagliapietra, B. L., Flores, V. D. A., & Pereira Dos Santos Richards, N. S. (2021). In vitro test to evaluate survival in the gastrointestinal tract of commercial probiotics. Current research in food science, 4, 320–325. https://doi.org/10.1016/j.crfs.2021.04.006
Eliaz I. (2020). The Failure of Probiotics-and the Strategy of Microbiome Synergy. Integrative medicine (Encinitas, Calif.), 19(3), 8–10.
Marinova, V. Y., Rasheva, I. K., Kizheva, Y. K., Dermenzhieva, Y. D., & Hristova, P. K. (2019). Microbiological quality of probiotic dietary supplements. Biotechnology & Biotechnological Equipment, 33(1), 834–841. https://doi.org/10.1080/13102818.2019.1621208
Cohen, S. N., Chang, A. C., Boyer, H. W., & Helling, R. B. (1973). Construction of biologically functional bacterial plasmids in vitro. Proceedings of the National Academy of Sciences of the United States of America, 70(11), 3240–3244. https://doi.org/10.1073/pnas.70.11.3240
Mugwanda, K., Hamese, S., Van Zyl, W. F., Prinsloo, E., Du Plessis, M., Dicks, L. M. T., & Thimiri Govinda Raj, D. B. (2023). Recent advances in genetic tools for engineering probiotic lactic acid bacteria. Bioscience reports, 43(1), BSR20211299. https://doi.org/10.1042/BSR20211299
Yadav, M., & Shukla, P. (2020). Efficient engineered probiotics using synthetic biology approaches: A review. Biotechnology and applied biochemistry, 67(1), 22–29. https://doi.org/10.1002/bab.1822
Sun, N., & Zhao, H. (2013). Transcription activator-like effector nucleases (TALENs): a highly efficient and versatile tool for genome editing. Biotechnology and bioengineering, 110(7), 1811–1821. https://doi.org/10.1002/bit.24890
Puchta H. (2017). Applying CRISPR/Cas for genome engineering in plants: the best is yet to come. Current opinion in plant biology, 36, 1–8. https://doi.org/10.1016/j.pbi.2016.11.011
Mugwanda, K., Hamese, S., Van Zyl, W. F., Prinsloo, E., Du Plessis, M., Dicks, L. M. T., & Thimiri Govinda Raj, D. B. (2023). Recent advances in genetic tools for engineering probiotic lactic acid bacteria. Bioscience reports, 43(1), BSR20211299. https://doi.org/10.1042/BSR20211299
Lynch, J. P., Goers, L., & Lesser, C. F. (2022). Emerging strategies for engineering Escherichia coli Nissle 1917-based therapeutics. Trends in pharmacological sciences, 43(9), 772–786. https://doi.org/10.1016/j.tips.2022.02.002
Mathipa, M. G., Thantsha, M. S., & Bhunia, A. K. (2019). Lactobacillus casei expressing Internalins A and B reduces Listeria monocytogenes interaction with Caco-2 cells in vitro. Microbial biotechnology, 12(4), 715–729. https://doi.org/10.1111/1751-7915.13407
Bahey-El-Din, M., & Gahan, C. G. (2010). Lactococcus lactis: from the dairy industry to antigen and therapeutic protein delivery. Discovery medicine, 9(48), 455–461.
Mokoena, M. P., Omatola, C. A., & Olaniran, A. O. (2021). Applications of Lactic Acid Bacteria and Their Bacteriocins against Food Spoilage Microorganisms and Foodborne Pathogens. Molecules (Basel, Switzerland), 26(22), 7055. https://doi.org/10.3390/molecules26227055
Wang, Z., Yu, Q., Gao, J., & Yang, Q. (2012). Mucosal and systemic immune responses induced by recombinant Lactobacillus spp. expressing the hemagglutinin of the avian influenza virus H5N1. Clinical and vaccine immunology : CVI, 19(2), 174–179. https://doi.org/10.1128/CVI.05618-11
Yu, Q. H., Dong, S. M., Zhu, W. Y., & Yang, Q. (2007). Use of green fluorescent protein to monitor Lactobacillus in the gastro-intestinal tract of chicken. FEMS microbiology letters, 275(2), 207–213. https://doi.org/10.1111/j.1574-6968.2007.00877.x
Lagenaur, L. A., Sanders-Beer, B. E., Brichacek, B., Pal, R., Liu, X., Liu, Y., Yu, R., Venzon, D., Lee, P. P., & Hamer, D. H. (2011). Prevention of vaginal SHIV transmission in macaques by a live recombinant Lactobacillus. Mucosal immunology, 4(6), 648–657. https://doi.org/10.1038/mi.2011.30
Ma, Y., Liu, J., Hou, J., Dong, Y., Lu, Y., Jin, L., Cao, R., Li, T., & Wu, J. (2014). Oral administration of recombinant Lactococcus lactis expressing HSP65 and tandemly repeated P277 reduces the incidence of type I diabetes in non-obese diabetic mice. PloS one, 9(8), e105701. https://doi.org/10.1371/journal.pone.0105701
Wong, C. C., Zhang, L., Wu, W. K., Shen, J., Chan, R. L., Lu, L., Hu, W., Li, M. X., Li, L. F., Ren, S. X., Li, Y. F., Li, J., & Cho, C. H. (2017). Cathelicidin-encoding Lactococcus lactis promotes mucosal repair in murine experimental colitis. Journal of gastroenterology and hepatology, 32(3), 609–619. https://doi.org/10.1111/jgh.13499
Xiang, H., Wei, W., & Tan, H. (2003). Food-grade expression of human glutathione S-transferase and Cu/Zn superoxide dismutase in Lactococcus lactis. Biomolecular engineering, 20(3), 107–112. https://doi.org/10.1016/s1389-0344(03)00007-8
Baeshen, M. N., Al-Hejin, A. M., Bora, R. S., Ahmed, M. M., Ramadan, H. A., Saini, K. S., Baeshen, N. A., & Redwan, E. M. (2015). Production of Biopharmaceuticals in E. coli: Current Scenario and Future Perspectives. Journal of microbiology and biotechnology, 25(7), 953–962. https://doi.org/10.4014/jmb.1412.12079
Leventhal, D. S., Sokolovska, A., Li, N., Plescia, C., Kolodziej, S. A., Gallant, C. W., Christmas, R., Gao, J. R., James, M. J., Abin-Fuentes, A., Momin, M., Bergeron, C., Fisher, A., Miller, P. F., West, K. A., & Lora, J. M. (2020). Immunotherapy with engineered bacteria by targeting the STING pathway for anti-tumor immunity. Nature communications, 11(1), 2739. https://doi.org/10.1038/s41467-020-16602-0
Daeffler, K. N., Galley, J. D., Sheth, R. U., Ortiz-Velez, L. C., Bibb, C. O., Shroyer, N. F., Britton, R. A., & Tabor, J. J. (2017). Engineering bacterial thiosulfate and tetrathionate sensors for detecting gut inflammation. Molecular systems biology, 13(4), 923. https://doi.org/10.15252/msb.20167416
Kurtz, C. B., Millet, Y. A., Puurunen, M. K., Perreault, M., Charbonneau, M. R., Isabella, V. M., Kotula, J. W., Antipov, E., Dagon, Y., Denney, W. S., Wagner, D. A., West, K. A., Degar, A. J., Brennan, A. M., & Miller, P. F. (2019). An engineered E. coli Nissle improves hyperammonemia and survival in mice and shows dose-dependent exposure in healthy humans. Science translational medicine, 11(475), eaau7975. https://doi.org/10.1126/scitranslmed.aau7975
Lambert, J. M., Bongers, R. S., & Kleerebezem, M. (2007). Cre-lox-based system for multiple gene deletions and selectable-marker removal in Lactobacillus plantarum. Applied and environmental microbiology, 73(4), 1126–1135. https://doi.org/10.1128/AEM.01473-06
Song, X., Huang, H., Xiong, Z., Ai, L., & Yang, S. (2017). CRISPR-Cas9D10A Nickase-Assisted Genome Editing in Lactobacillus casei. Applied and environmental microbiology, 83(22), e01259-17. https://doi.org/10.1128/AEM.01259-17
Lerner, A., Benzvi, C., & Vojdani, A. (2024). The Potential Harmful Effects of Genetically Engineered Microorganisms (GEMs) on the Intestinal Microbiome and Public Health. Microorganisms, 12(2), 238. https://doi.org/10.3390/microorganisms12020238
Schell, M. A., Karmirantzou, M., Snel, B., Vilanova, D., Berger, B., Pessi, G., Zwahlen, M. C., Desiere, F., Bork, P., Delley, M., Pridmore, R. D., & Arigoni, F. (2002). The genome sequence of Bifidobacterium longum reflects its adaptation to the human gastrointestinal tract. Proceedings of the National Academy of Sciences of the United States of America, 99(22), 14422–14427. https://doi.org/10.1073/pnas.212527599
Kosmerl, E., Rocha-Mendoza, D., Ortega-Anaya, J., Jiménez-Flores, R., & García-Cano, I. (2021). Improving Human Health with Milk Fat Globule Membrane, Lactic Acid Bacteria, and Bifidobacteria. Microorganisms, 9(2), 341. https://doi.org/10.3390/microorganisms9020341
Turroni, F., Milani, C., Duranti, S., Ferrario, C., Lugli, G. A., Mancabelli, L., van Sinderen, D., & Ventura, M. (2018). Bifidobacteria and the infant gut: an example of co-evolution and natural selection. Cellular and molecular life sciences : CMLS, 75(1), 103–118. https://doi.org/10.1007/s00018-017-2672-0
Matsumoto, T., Ishikawa, H., Tateda, K., Yaeshima, T., Ishibashi, N., & Yamaguchi, K. (2008). Oral administration of Bifidobacterium longum prevents gut-derived Pseudomonas aeruginosa sepsis in mice. Journal of applied microbiology, 104(3), 672–680. https://doi.org/10.1111/j.1365-2672.2007.03593.x
Lau, A. S., Yanagisawa, N., Hor, Y. Y., Lew, L. C., Ong, J. S., Chuah, L. O., Lee, Y. Y., Choi, S. B., Rashid, F., Wahid, N., Sugahara, H., Xiao, J. Z., & Liong, M. T. (2018). Bifidobacterium longum BB536 alleviated upper respiratory illnesses and modulated gut microbiota profiles in Malaysian pre-school children. Beneficial microbes, 9(1), 61–70. https://doi.org/10.3920/BM2017.0063
Barba-Vidal, E., Castillejos, L., Roll, V. F. B., Cifuentes-Orjuela, G., Moreno Muñoz, J. A., & Martín-Orúe, S. M. (2017). The Probiotic Combination of Bifidobacterium longum subsp. infantis CECT 7210 and Bifidobacterium animalis subsp. lactis BPL6 Reduces Pathogen Loads and Improves Gut Health of Weaned Piglets Orally Challenged with Salmonella Typhimurium. Frontiers in microbiology, 8, 1570. https://doi.org/10.3389/fmicb.2017.01570
Cha, M. K., Lee, D. K., An, H. M., Lee, S. W., Shin, S. H., Kwon, J. H., Kim, K. J., & Ha, N. J. (2012). Antiviral activity of Bifidobacterium adolescentis SPM1005-A on human papillomavirus type 16. BMC medicine, 10, 72. https://doi.org/10.1186/1741-7015-10-72
Foo, N. P., Ou Yang, H., Chiu, H. H., Chan, H. Y., Liao, C. C., Yu, C. K., & Wang, Y. J. (2011). Probiotics prevent the development of 1,2-dimethylhydrazine (DMH)-induced colonic tumorigenesis through suppressed colonic mucosa cellular proliferation and increased stimulation of macrophages. Journal of agricultural and food chemistry, 59(24), 13337–13345. https://doi.org/10.1021/jf203444d
Tian, P., Bastiaanssen, T. F. S., Song, L., Jiang, B., Zhang, X., Zhao, J., Zhang, H., Chen, W., Cryan, J. F., & Wang, G. (2021). Unraveling the Microbial Mechanisms Underlying the Psychobiotic Potential of a Bifidobacterium breve Strain. Molecular nutrition & food research, 65(8), e2000704. https://doi.org/10.1002/mnfr.202000704
Tian, P., O'Riordan, K. J., Lee, Y. K., Wang, G., Zhao, J., Zhang, H., Cryan, J. F., & Chen, W. (2020). Towards a psychobiotic therapy for depression: Bifidobacterium breve CCFM1025 reverses chronic stress-induced depressive symptoms and gut microbial abnormalities in mice. Neurobiology of stress, 12, 100216. https://doi.org/10.1016/j.ynstr.2020.100216
Yunes, R. A., Poluektova, E. U., Vasileva, E. V., Odorskaya, M. V., Marsova, M. V., Kovalev, G. I., & Danilenko, V. N. (2020). A Multi-strain Potential Probiotic Formulation of GABA-Producing Lactobacillus plantarum 90sk and Bifidobacterium adolescentis 150 with Antidepressant Effects. Probiotics and antimicrobial proteins, 12(3), 973–979. https://doi.org/10.1007/s12602-019-09601-1
Zheng, J., Wittouck, S., Salvetti, E., Franz, C. M. A. P., Harris, H. M. B., Mattarelli, P., O'Toole, P. W., Pot, B., Vandamme, P., Walter, J., Watanabe, K., Wuyts, S., Felis, G. E., Gänzle, M. G., & Lebeer, S. (2020). A taxonomic note on the genus Lactobacillus: Description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. International journal of systematic and evolutionary microbiology, 70(4), 2782–2858. https://doi.org/10.1099/ijsem.0.004107
Junca, H., Pieper, D. H., & Medina, E. (2022). The emerging potential of microbiome transplantation on human health interventions. Computational and structural biotechnology journal, 20, 615–627. https://doi.org/10.1016/j.csbj.2022.01.009
Sekine, K., Toida, T., Saito, M., Kuboyama, M., Kawashima, T., & Hashimoto, Y. (1985). A new morphologically characterized cell wall preparation (whole peptidoglycan) from Bifidobacterium infantis with a higher efficacy on the regression of an established tumor in mice. Cancer research, 45(3), 1300–1307.
McIntosh, G. H., Royle, P. J., & Playne, M. J. (1999). A probiotic strain of L. acidophilus reduces DMH-induced large intestinal tumors in male Sprague-Dawley rats. Nutrition and cancer, 35(2), 153–159. https://doi.org/10.1207/S15327914NC352_9
Mechoud, M. A., Juarez, G. E., de Valdez, G. F., & Rodriguez, A. V. (2012). Lactobacillus reuteri CRL 1098 and Lactobacillus acidophilus CRL 1014 differently reduce in vitro immunotoxic effect induced by Ochratoxin A. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association, 50(12), 4310–4315. https://doi.org/10.1016/j.fct.2012.07.070
Gerbino, E., Carasi, P., Tymczyszyn, E. E., & Gómez-Zavaglia, A. (2014). Removal of cadmium by Lactobacillus kefir as a protective tool against toxicity. The Journal of dairy research, 81(3), 280–287. https://doi.org/10.1017/S0022029914000314
Witkin S. S. (2015). The vaginal microbiome, vaginal anti-microbial defence mechanisms and the clinical challenge of reducing infection-related preterm birth. BJOG : an international journal of obstetrics and gynaecology, 122(2), 213–218. https://doi.org/10.1111/1471-0528.13115
Cover, T. L., & Blaser, M. J. (2009). Helicobacter pylori in health and disease. Gastroenterology, 136(6), 1863–1873. https://doi.org/10.1053/j.gastro.2009.01.073
Chen, X., Liu, X. M., Tian, F., Zhang, Q., Zhang, H. P., Zhang, H., & Chen, W. (2012). Antagonistic activities of lactobacilli against Helicobacter pylori growth and infection in human gastric epithelial cells. Journal of food science, 77(1), M9–M14. https://doi.org/10.1111/j.1750-3841.2011.02498.x
Coconnier, M. H., Lievin, V., Hemery, E., & Servin, A. L. (1998). Antagonistic activity against Helicobacter infection in vitro and in vivo by the human Lactobacillus acidophilus strain LB. Applied and environmental microbiology, 64(11), 4573–4580. https://doi.org/10.1128/AEM.64.11.4573-4580.1998
Klarin, B., Adolfsson, A., Torstensson, A., & Larsson, A. (2018). Can probiotics be an alternative to chlorhexidine for oral care in the mechanically ventilated patient? A multicentre, prospective, randomised controlled open trial. Critical care (London, England), 22(1), 272. https://doi.org/10.1186/s13054-018-2209-4
Mullish, B. H., Marchesi, J. R., McDonald, J. A. K., Pass, D. A., Masetti, G., Michael, D. R., Plummer, S., Jack, A. A., Davies, T. S., Hughes, T. R., & Wang, D. (2021). Probiotics reduce self-reported symptoms of upper respiratory tract infection in overweight and obese adults: should we be considering probiotics during viral pandemics?. Gut microbes, 13(1), 1–9. https://doi.org/10.1080/19490976.2021.1900997
Salleh, R. M., Kuan, G., Aziz, M. N. A., Rahim, M. R. A., Rahayu, T., Sulaiman, S., Kusuma, D. W. Y., Adikari, A. M. G. C. P., Razam, M. S. M., Radhakrishnan, A. K., & Appukutty, M. (2021). Effects of Probiotics on Anxiety, Stress, Mood and Fitness of Badminton Players. Nutrients, 13(6), 1783. https://doi.org/10.3390/nu13061783
Sadowy, E., & Luczkiewicz, A. (2014). Drug-resistant and hospital-associated Enterococcus faecium from wastewater, riverine estuary and anthropogenically impacted marine catchment basin. BMC microbiology, 14, 66. https://doi.org/10.1186/1471-2180-14-66
Micallef, S. A., Goldstein, R. E., George, A., Ewing, L., Tall, B. D., Boyer, M. S., Joseph, S. W., & Sapkota, A. R. (2013). Diversity, distribution and antibiotic resistance of Enterococcus spp. recovered from tomatoes, leaves, water and soil on U.S. Mid-Atlantic farms. Food microbiology, 36(2), 465–474. https://doi.org/10.1016/j.fm.2013.04.016
Weiner, L. M., Webb, A. K., Limbago, B., Dudeck, M. A., Patel, J., Kallen, A. J., Edwards, J. R., & Sievert, D. M. (2016). Antimicrobial-Resistant Pathogens Associated With Healthcare-Associated Infections: Summary of Data Reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2011-2014. Infection control and hospital epidemiology, 37(11), 1288–1301. https://doi.org/10.1017/ice.2016.174
Kristich, C. J., Rice, L. B., & Arias, C. A. (2014). Enterococcal Infection—Treatment and Antibiotic Resistance. In M. S. Gilmore (Eds.) et. al., Enterococci: From Commensals to Leading Causes of Drug Resistant Infection. Massachusetts Eye and Ear Infirmary.
Ness, I. F., Diep, D. B., & Ike, Y. (2014). Enterococcal Bacteriocins and Antimicrobial Proteins that Contribute to Niche Control. In M. S. Gilmore (Eds.) et. al., Enterococci: From Commensals to Leading Causes of Drug Resistant Infection. Massachusetts Eye and Ear Infirmary.
Hammami, R., Fernandez, B., Lacroix, C., & Fliss, I. (2013). Anti-infective properties of bacteriocins: an update. Cellular and molecular life sciences : CMLS, 70(16), 2947–2967. https://doi.org/10.1007/s00018-012-1202-3
Serio, A., Chaves-López, C., Paparella, A., and Suzzi, G. (2010). Evaluation of metabolic activities of enterococci isolated from Pecorino Abruzzese cheese. Int. Dairy J. 20, 459–464. doi: 10.1016/j.idairyj.2010.02.005
Abengózar, M. Á., Cebrián, R., Saugar, J. M., Gárate, T., Valdivia, E., Martínez-Bueno, M., Maqueda, M., & Rivas, L. (2017). Enterocin AS-48 as Evidence for the Use of Bacteriocins as New Leishmanicidal Agents. Antimicrobial agents and chemotherapy, 61(4), e02288-16. https://doi.org/10.1128/AAC.02288-16
Ogier, J. C., & Serror, P. (2008). Safety assessment of dairy microorganisms: the Enterococcus genus. International journal of food microbiology, 126(3), 291–301. https://doi.org/10.1016/j.ijfoodmicro.2007.08.017
Khay, E. O., Idaomar, M., El Moussaoui, N., and Abrini, J. (2014). Application of a bacteriocin-like inhibitory substance producing Enterococcus durans E204 strain, isolated from camel milk, to control Listeria monocytogenes CECT 4032 in goat jben. Ann. Microbiol. 64, 313–319. doi: 10.1007/s13213-013-0666-1
Foulquié Moreno, M. R., Sarantinopoulos, P., Tsakalidou, E., & De Vuyst, L. (2006). The role and application of enterococci in food and health. International journal of food microbiology, 106(1), 1–24. https://doi.org/10.1016/j.ijfoodmicro.2005.06.026
Callewaert, R., Hugas, M., and Vuyst, L. D. (2000). Competitiveness and bacteriocin production of Enterococci in the production of Spanish-style dry fermented sausages. Int. J. Food Microbiol. 57, 33–42. doi: 10.1016/S0168-1605(00)00228-2
Turnbull, P. C. B. (1996). Bacillus. In S. Baron (Ed.), Medical Microbiology. (4th ed.). University of Texas Medical Branch at Galveston.
Beladjal, L., Gheysens, T., Clegg, J. S., Amar, M., & Mertens, J. (2018). Life from the ashes: survival of dry bacterial spores after very high temperature exposure. Extremophiles : life under extreme conditions, 22(5), 751–759. https://doi.org/10.1007/s00792-018-1035-6
Sorokulova, I. (2013). Modern Status and Perspectives of Bacillus Bacteria as Probiotics. Journal of Probiotics & Health, 1, 1-5.. doi: 10.4172/2329-8901.1000e106.
Zhu, K., Hölzel, C. S., Cui, Y., Mayer, R., Wang, Y., Dietrich, R., Didier, A., Bassitta, R., Märtlbauer, E., & Ding, S. (2016). Probiotic Bacillus cereus Strains, a Potential Risk for Public Health in China. Frontiers in microbiology, 7, 718. https://doi.org/10.3389/fmicb.2016.00718
Ciffo F. (1984). Determination of the spectrum of antibiotic resistance of the "Bacillus subtilis" strains of Enterogermina. Chemioterapia : international journal of the Mediterranean Society of Chemotherapy, 3(1), 45–52.
Le Marrec, C., Hyronimus, B., Bressollier, P., Verneuil, B., & Urdaci, M. C. (2000). Biochemical and genetic characterization of coagulin, a new antilisterial bacteriocin in the pediocin family of bacteriocins, produced by Bacillus coagulans I(4). Applied and environmental microbiology, 66(12), 5213–5220. https://doi.org/10.1128/AEM.66.12.5213-5220.2000
Fan, B., Wang, C., Song, X., Ding, X., Wu, L., Wu, H., Gao, X., & Borriss, R. (2018). Bacillus velezensis FZB42 in 2018: The Gram-Positive Model Strain for Plant Growth Promotion and Biocontrol. Frontiers in microbiology, 9, 2491. https://doi.org/10.3389/fmicb.2018.02491
Fiorini, G., Cimminiello, C., Chianese, R., Visconti, G. P., Cova, D., Uberti, T., & Gibelli, A. (1985). Bacillus subtilis selectively stimulates the synthesis of membrane bound and secreted IgA. Chemioterapia : international journal of the Mediterranean Society of Chemotherapy, 4(4), 310–312.
Nista, E. C., Candelli, M., Cremonini, F., Cazzato, I. A., Zocco, M. A., Franceschi, F., Cammarota, G., Gasbarrini, G., & Gasbarrini, A. (2004). Bacillus clausii therapy to reduce side-effects of anti-Helicobacter pylori treatment: randomized, double-blind, placebo controlled trial. Alimentary pharmacology & therapeutics, 20(10), 1181–1188. https://doi.org/10.1111/j.1365-2036.2004.02274.x
Zamani, M., Behboudi, K., & Ahmadzadeh, M. (2013). Quorum quenching by Bacillus cereus U92: a double-edged sword in biological control of plant diseases. Biocontrol Science and Technology, 23(5), 555–573. https://doi.org/10.1080/09583157.2013.787046
Brenner, W. G., & Schmülling, T. (2015). Summarizing and exploring data of a decade of cytokinin-related transcriptomics. Frontiers in plant science, 6, 29. https://doi.org/10.3389/fpls.2015.00029
Akhtar, S. S., Amby, D. B., Hegelund, J. N., Fimognari, L., Großkinsky, D. K., Westergaard, J. C., Müller, R., Moelbak, L., Liu, F., & Roitsch, T. (2020). Bacillus licheniformis FMCH001 Increases Water Use Efficiency via Growth Stimulation in Both Normal and Drought Conditions. Frontiers in plant science, 11, 297. https://doi.org/10.3389/fpls.2020.00297
Kaloterakis, Nikolaos & van Delden, Sander & Hartley, Susan & Deyn, G.B.. (2021). Silicon application and plant growth promoting rhizobacteria consisting of six pure Bacillus species alleviate salinity stress in cucumber (Cucumis sativus L). Scientia Horticulturae. 288. 110383. https://doi.org/10.1016/j.scienta.2021.110383
Hou, K., Wu, Z. X., Chen, X. Y., Wang, J. Q., Zhang, D., Xiao, C., Zhu, D., Koya, J. B., Wei, L., Li, J., & Chen, Z. S. (2022). Microbiota in health and diseases. Signal transduction and targeted therapy, 7(1), 135. https://doi.org/10.1038/s41392-022-00974-4
Bisgaard, H., Li, N., Bonnelykke, K., Chawes, B. L., Skov, T., Paludan-Müller, G., Stokholm, J., Smith, B., & Krogfelt, K. A. (2011). Reduced diversity of the intestinal microbiota during infancy is associated with increased risk of allergic disease at school age. The Journal of allergy and clinical immunology, 128(3), 646–52.e525. https://doi.org/10.1016/j.jaci.2011.04.060
Kim C. H. (2023). Complex regulatory effects of gut microbial short-chain fatty acids on immune tolerance and autoimmunity. Cellular & molecular immunology, 20(4), 341–350. https://doi.org/10.1038/s41423-023-00987-1
Green, M., Arora, K., & Prakash, S. (2020). Microbial Medicine: Prebiotic and Probiotic Functional Foods to Target Obesity and Metabolic Syndrome. International journal of molecular sciences, 21(8), 2890. https://doi.org/10.3390/ijms21082890
Ancona, A., Petito, C., Iavarone, I., Petito, V., Galasso, L., Leonetti, A., Turchini, L., Belella, D., Ferrarrese, D., Addolorato, G., Armuzzi, A., Gasbarrini, A., & Scaldaferri, F. (2021). The gut-brain axis in irritable bowel syndrome and inflammatory bowel disease. Digestive and liver disease : official journal of the Italian Society of Gastroenterology and the Italian Association for the Study of the Liver, 53(3), 298–305. https://doi.org/10.1016/j.dld.2020.11.026
DeGruttola, A. K., Low, D., Mizoguchi, A., & Mizoguchi, E. (2016). Current Understanding of Dysbiosis in Disease in Human and Animal Models. Inflammatory bowel diseases, 22(5), 1137–1150. https://doi.org/10.1097/MIB.0000000000000750
Melo-Bolívar, J. F., Ruiz Pardo, R. Y., Junca, H., Sidjabat, H. E., Cano-Lozano, J. A., & Villamil Díaz, L. M. (2022). Competitive Exclusion Bacterial Culture Derived from the Gut Microbiome of Nile Tilapia (Oreochromis niloticus) as a Resource to Efficiently Recover Probiotic Strains: Taxonomic, Genomic, and Functional Proof of Concept. Microorganisms, 10(7), 1376. https://doi.org/10.3390/microorganisms10071376
Dixit, Y., Kanojiya, K., Bhingardeve, N., Ahire, J. J., & Saroj, D. (2023). Identification and characterisation of antimicrobial compound produced by probiotic Alkalihalobacillus clausii 088AE. Brazilian journal of microbiology : [publication of the Brazilian Society for Microbiology], 54(3), 1737–1743. https://doi.org/10.1007/s42770-023-01076-1
Bermudez-Brito, M., Plaza-Díaz, J., Muñoz-Quezada, S., Gómez-Llorente, C., & Gil, A. (2012). Probiotic mechanisms of action. Annals of nutrition & metabolism, 61(2), 160–174. https://doi.org/10.1159/000342079
Walsham, A. D., MacKenzie, D. A., Cook, V., Wemyss-Holden, S., Hews, C. L., Juge, N., & Schüller, S. (2016). Lactobacillus reuteri Inhibition of Enteropathogenic Escherichia coli Adherence to Human Intestinal Epithelium. Frontiers in microbiology, 7, 244. https://doi.org/10.3389/fmicb.2016.00244
Liu, C., Zhang, Z. Y., Dong, K., & Guo, X. K. (2010). Adhesion and immunomodulatory effects of Bifidobacterium lactis HN019 on intestinal epithelial cells INT-407. World journal of gastroenterology, 16(18), 2283–2290. https://doi.org/10.3748/wjg.v16.i18.2283
Sun, Z., Huang, L., Kong, J., Hu, S., Zhang, X., & Kong, W. (2012). In vitro evaluation of Lactobacillus crispatus K313 and K243: high-adhesion activity and anti-inflammatory effect on Salmonella braenderup infected intestinal epithelial cell. Veterinary microbiology, 159(1-2), 212–220. https://doi.org/10.1016/j.vetmic.2012.03.043
Bron, P. A., Tomita, S., Mercenier, A., & Kleerebezem, M. (2013). Cell surface-associated compounds of probiotic lactobacilli sustain the strain-specificity dogma. Current opinion in microbiology, 16(3), 262–269. https://doi.org/10.1016/j.mib.2013.06.001
Kapczynski, D. R., Meinersmann, R. J., & Lee, M. D. (2000). Adherence of Lactobacillus to intestinal 407 cells in culture correlates with fibronectin binding. Current microbiology, 41(2), 136–141. https://doi.org/10.1007/s002840010107
Tuo, Y., Yu, H., Ai, L., Wu, Z., Guo, B., & Chen, W. (2013). Aggregation and adhesion properties of 22 Lactobacillus strains. Journal of dairy science, 96(7), 4252–4257. https://doi.org/10.3168/jds.2013-6547
Tytgat, H. L., Douillard, F. P., Reunanen, J., Rasinkangas, P., Hendrickx, A. P., Laine, P. K., Paulin, L., Satokari, R., & de Vos, W. M. (2016). Lactobacillus rhamnosus GG Outcompetes Enterococcus faecium via Mucus-Binding Pili: Evidence for a Novel and Heterospecific Probiotic Mechanism. Applied and environmental microbiology, 82(19), 5756–5762. https://doi.org/10.1128/AEM.01243-16
Kang, X., Dong, F., Shi, C., Liu, S., Sun, J., Chen, J., Li, H., Xu, H., Lao, X., & Zheng, H. (2019). DRAMP 2.0, an updated data repository of antimicrobial peptides. Scientific data, 6(1), 148. https://doi.org/10.1038/s41597-019-0154-y
Rima, M., Rima, M., Fajloun, Z., Sabatier, J. M., Bechinger, B., & Naas, T. (2021). Antimicrobial Peptides: A Potent Alternative to Antibiotics. Antibiotics (Basel, Switzerland), 10(9), 1095. https://doi.org/10.3390/antibiotics10091095
Cheikhyoussef, A., Pogori, N., Chen, W., & Zhang, H. (2008). Antimicrobial proteinaceous compounds obtained from bifidobacteria: from production to their application. International journal of food microbiology, 125(3), 215–222. https://doi.org/10.1016/j.ijfoodmicro.2008.03.012
Collado, M. C., González, A., González, R., Hernández, M., Ferrús, M. A., & Sanz, Y. (2005). Antimicrobial peptides are among the antagonistic metabolites produced by Bifidobacterium against Helicobacter pylori. International journal of antimicrobial agents, 25(5), 385–391. https://doi.org/10.1016/j.ijantimicag.2005.01.017
Akter, N., Hashim, R., Pham, H. Q., Choi, S. D., Lee, D. W., Shin, J. H., & Rajagopal, K. (2020). Lactobacillus acidophilus Antimicrobial Peptide Is Antagonistic to Aeromonas hydrophila. Frontiers in microbiology, 11, 570851. https://doi.org/10.3389/fmicb.2020.570851
Choi, G. H., Fugaban, J. I. I., Dioso, C. M., Bucheli, J. E. V., Holzapfel, W. H., & Todorov, S. D. (2023). Antimicrobial Peptides (Bacteriocins) Produced by Lactococcus lactis and Pediococcus pentosaceus Strains with Activity Against Clinical and Food-Borne Pathogens. Probiotics and antimicrobial proteins, 10.1007/s12602-023-10188-x. Advance online publication. https://doi.org/10.1007/s12602-023-10188-x
Kumar, M., Dhaka, P., Vijay, D., Vergis, J., Mohan, V., Kumar, A., Kurkure, N. V., Barbuddhe, S. B., Malik, S. V., & Rawool, D. B. (2016). Antimicrobial effects of Lactobacillus plantarum and Lactobacillus acidophilus against multidrug-resistant enteroaggregative Escherichia coli. International journal of antimicrobial agents, 48(3), 265–270. https://doi.org/10.1016/j.ijantimicag.2016.05.014
Pedrolli, D. B., Ribeiro, N. V., Squizato, P. N., de Jesus, V. N., Cozetto, D. A., & Team AQA Unesp at iGEM 2017 (2019). Engineering Microbial Living Therapeutics: The Synthetic Biology Toolbox. Trends in biotechnology, 37(1), 100–115. https://doi.org/10.1016/j.tibtech.2018.09.005
Liao, H., Liu, S., Wang, H., Su, H., & Liu, Z. (2019). Enhanced antifungal activity of bovine lactoferrin-producing probiotic Lactobacillus casei in the murine model of vulvovaginal candidiasis. BMC microbiology, 19(1), 7. https://doi.org/10.1186/s12866-018-1370-x
Vancamelbeke, M., & Vermeire, S. (2017). The intestinal barrier: a fundamental role in health and disease. Expert review of gastroenterology & hepatology, 11(9), 821–834. https://doi.org/10.1080/17474124.2017.1343143
Hansson G. C. (2012). Role of mucus layers in gut infection and inflammation. Current opinion in microbiology, 15(1), 57–62. https://doi.org/10.1016/j.mib.2011.11.002
Pietrzak, B., Tomela, K., Olejnik-Schmidt, A., Mackiewicz, A., & Schmidt, M. (2020). Secretory IgA in Intestinal Mucosal Secretions as an Adaptive Barrier against Microbial Cells. International journal of molecular sciences, 21(23), 9254. https://doi.org/10.3390/ijms21239254
Antoni, L., Nuding, S., Weller, D., Gersemann, M., Ott, G., Wehkamp, J., & Stange, E. F. (2013). Human colonic mucus is a reservoir for antimicrobial peptides. Journal of Crohn's & colitis, 7(12), e652–e664. https://doi.org/10.1016/j.crohns.2013.05.006
Van der Sluis, M., De Koning, B. A., De Bruijn, A. C., Velcich, A., Meijerink, J. P., Van Goudoever, J. B., Büller, H. A., Dekker, J., Van Seuningen, I., Renes, I. B., & Einerhand, A. W. (2006). Muc2-deficient mice spontaneously develop colitis, indicating that MUC2 is critical for colonic protection. Gastroenterology, 131(1), 117–129. https://doi.org/10.1053/j.gastro.2006.04.020
Wenzel, T. J., Haskey, N., Kwong, E., Greuel, B. K., Gates, E. J., Gibson, D. L., & Klegeris, A. (2022). Dietary fats modulate neuroinflammation in mucin 2 knock out mice model of spontaneous colitis. Biochimica et biophysica acta. Molecular basis of disease, 1868(3), 166336. https://doi.org/10.1016/j.bbadis.2021.166336
Paone, P., & Cani, P. D. (2020). Mucus barrier, mucins and gut microbiota: the expected slimy partners?. Gut, 69(12), 2232–2243. https://doi.org/10.1136/gutjnl-2020-322260
Kelly, C. P., Becker, S., Linevsky, J. K., Joshi, M. A., O'Keane, J. C., Dickey, B. F., LaMont, J. T., & Pothoulakis, C. (1994). Neutrophil recruitment in Clostridium difficile toxin A enteritis in the rabbit. The Journal of clinical investigation, 93(3), 1257–1265. https://doi.org/10.1172/JCI117080
Tanaka, S., Mizuno, M., Maga, T., Yoshinaga, F., Tomoda, J., Nasu, J., Okada, H., Yokota, K., Oguma, K., Shiratori, Y., & Tsuji, T. (2003). H. pylori decreases gastric mucin synthesis via inhibition of galactosyltransferase. Hepato-gastroenterology, 50(53), 1739–1742
Desai, M. S., Seekatz, A. M., Koropatkin, N. M., Kamada, N., Hickey, C. A., Wolter, M., Pudlo, N. A., Kitamoto, S., Terrapon, N., Muller, A., Young, V. B., Henrissat, B., Wilmes, P., Stappenbeck, T. S., Núñez, G., & Martens, E. C. (2016). A Dietary Fiber-Deprived Gut Microbiota Degrades the Colonic Mucus Barrier and Enhances Pathogen Susceptibility. Cell, 167(5), 1339–1353.e21. https://doi.org/10.1016/j.cell.2016.10.043
Mack, D. R., Michail, S., Wei, S., McDougall, L., & Hollingsworth, M. A. (1999). Probiotics inhibit enteropathogenic E. coli adherence in vitro by inducing intestinal mucin gene expression. The American journal of physiology, 276(4), G941–G950. https://doi.org/10.1152/ajpgi.1999.276.4.G941
Mattar, A. F., Teitelbaum, D. H., Drongowski, R. A., Yongyi, F., Harmon, C. M., & Coran, A. G. (2002). Probiotics up-regulate MUC-2 mucin gene expression in a Caco-2 cell-culture model. Pediatric surgery international, 18(7), 586–590. https://doi.org/10.1007/s00383-002-0855-7
Ahl, D., Liu, H., Schreiber, O., Roos, S., Phillipson, M., & Holm, L. (2016). Lactobacillus reuteri increases mucus thickness and ameliorates dextran sulphate sodium-induced colitis in mice. Acta physiologica (Oxford, England), 217(4), 300–310. https://doi.org/10.1111/apha.12695
Zhang, W., Zhou, Q., Liu, H., Xu, J., Huang, R., Shen, B., Guo, Y., Ai, X., Xu, J., Zhao, X., Liu, Y., Wang, Y., & Zhi, F. (2023). Bacteroides fragilis strain ZY-312 facilitates colonic mucosa regeneration in colitis via motivating STAT3 signaling pathway induced by IL-22 from ILC3 secretion. Frontiers in immunology, 14, 1156762. https://doi.org/10.3389/fimmu.2023.1156762
Chassaing, B., Kumar, M., Baker, M. T., Singh, V., & Vijay-Kumar, M. (2014). Mammalian gut immunity. Biomedical journal, 37(5), 246–258. https://doi.org/10.4103/2319-4170.130922
Yuan, Q., & Walker, W. A. (2004). Innate immunity of the gut: mucosal defense in health and disease. Journal of pediatric gastroenterology and nutrition, 38(5), 463–473. https://doi.org/10.1097/00005176-200405000-00001
Zhao, Q., & Elson, C. O. (2018). Adaptive immune education by gut microbiota antigens. Immunology, 154(1), 28–37. https://doi.org/10.1111/imm.12896
Wang, L., Zhu, L., & Qin, S. (2019). Gut Microbiota Modulation on Intestinal Mucosal Adaptive Immunity. Journal of immunology research, 2019, 4735040. https://doi.org/10.1155/2019/4735040
Krawiec, P., Pawłowska-Kamieniak, A., & Pac-Kożuchowska, E. (2021). Interleukin 10 and interleukin 10 receptor in paediatric inflammatory bowel disease: from bench to bedside lesson. Journal of inflammation (London, England), 18(1), 13. https://doi.org/10.1186/s12950-021-00279-3
Kober, A. K. M. H., Riaz Rajoka, M. S., Mehwish, H. M., Villena, J., & Kitazawa, H. (2022). Immunomodulation Potential of Probiotics: A Novel Strategy for Improving Livestock Health, Immunity, and Productivity. Microorganisms, 10(2), 388. https://doi.org/10.3390/microorganisms10020388
von der Weid, T., Bulliard, C., & Schiffrin, E. J. (2001). Induction by a lactic acid bacterium of a population of CD4(+) T cells with low proliferative capacity that produce transforming growth factor beta and interleukin-10. Clinical and diagnostic laboratory immunology, 8(4), 695–701. https://doi.org/10.1128/CDLI.8.4.695-701.2001
Takano, T., Endo, R., Wang, Y., Nakajima-Adachi, H., & Hachimura, S. (2020). Lactobacillus plantarum OLL2712 induces IL-10 production by intestinal dendritic cells. Bioscience of microbiota, food and health, 39(2), 39–44. https://doi.org/10.12938/bmfh.19-019
Kawano, M., Miyoshi, M., & Miyazaki, T. (2019). Lactobacillus helveticus SBT2171 Induces A20 Expression via Toll-Like Receptor 2 Signaling and Inhibits the Lipopolysaccharide-Induced Activation of Nuclear Factor-kappa B and Mitogen-Activated Protein Kinases in Peritoneal Macrophages. Frontiers in immunology, 10, 845. https://doi.org/10.3389/fimmu.2019.00845
Sturm, A., Rilling, K., Baumgart, D. C., Gargas, K., Abou-Ghazalé, T., Raupach, B., Eckert, J., Schumann, R. R., Enders, C., Sonnenborn, U., Wiedenmann, B., & Dignass, A. U. (2005). Escherichia coli Nissle 1917 distinctively modulates T-cell cycling and expansion via toll-like receptor 2 signaling. Infection and immunity, 73(3), 1452–1465. https://doi.org/10.1128/IAI.73.3.1452-1465.2005
Sun, S., Xu, X., Liang, L., Wang, X., Bai, X., Zhu, L., He, Q., Liang, H., Xin, X., Wang, L., Lou, C., Cao, X., Chen, X., Li, B., Wang, B., & Zhao, J. (2021). Lactic Acid-Producing Probiotic Saccharomyces cerevisiae Attenuates Ulcerative Colitis via Suppressing Macrophage Pyroptosis and Modulating Gut Microbiota. Frontiers in immunology, 12, 777665. https://doi.org/10.3389/fimmu.2021.777665
Li, Y. T., Xu, H., Ye, J. Z., Wu, W. R., Shi, D., Fang, D. Q., Liu, Y., & Li, L. J. (2019). Efficacy of Lactobacillus rhamnosus GG in treatment of acute pediatric diarrhea: A systematic review with meta-analysis. World journal of gastroenterology, 25(33), 4999–5016. https://doi.org/10.3748/wjg.v25.i33.4999
Travers, M. A., Florent, I., Kohl, L., & Grellier, P. (2011). Probiotics for the control of parasites: an overview. Journal of parasitology research, 2011, 610769. https://doi.org/10.1155/2011/610769
Vinolo, M. A., Rodrigues, H. G., Nachbar, R. T., & Curi, R. (2011). Regulation of inflammation by short chain fatty acids. Nutrients, 3(10), 858–876. https://doi.org/10.3390/nu3100858
Sun, M., Wu, W., Liu, Z., & Cong, Y. (2017). Microbiota metabolite short chain fatty acids, GPCR, and inflammatory bowel diseases. Journal of gastroenterology, 52(1), 1–8. https://doi.org/10.1007/s00535-016-1242-9
Reeves, R. E., Warren, L. G., Susskind, B., & Lo, H. S. (1977). An energy-conserving pyruvate-to-acetate pathway in Entamoeba histolytica. Pyruvate synthase and a new acetate thiokinase. The Journal of biological chemistry, 252(2), 726–731.
Macy, J. M., Ljungdahl, L. G., & Gottschalk, G. (1978). Pathway of succinate and propionate formation in Bacteroides fragilis. Journal of bacteriology, 134(1), 84–91. https://doi.org/10.1128/jb.134.1.84-91.1978
Sun, Y., & O'Riordan, M. X. (2013). Regulation of bacterial pathogenesis by intestinal short-chain Fatty acids. Advances in applied microbiology, 85, 93–118. https://doi.org/10.1016/B978-0-12-407672-3.00003-4
Weaver C. M. (2015). Diet, gut microbiome, and bone health. Current osteoporosis reports, 13(2), 125–130. https://doi.org/10.1007/s11914-015-0257-0
Zou, F., Qiu, Y., Huang, Y., Zou, H., Cheng, X., Niu, Q., Luo, A., & Sun, J. (2021). Effects of short-chain fatty acids in inhibiting HDAC and activating p38 MAPK are critical for promoting B10 cell generation and function. Cell death & disease, 12(6), 582. https://doi.org/10.1038/s41419-021-03880-9
Friščić, J., Dürholz, K., Chen, X., Engdahl, C., Möller, L., Schett, G., Zaiss, M. M., & Hoffmann, M. H. (2021). Dietary Derived Propionate Regulates Pathogenic Fibroblast Function and Ameliorates Experimental Arthritis and Inflammatory Tissue Priming. Nutrients, 13(5), 1643. https://doi.org/10.3390/nu13051643
Lenoir, M., Martín, R., Torres-Maravilla, E., Chadi, S., González-Dávila, P., Sokol, H., Langella, P., Chain, F., & Bermúdez-Humarán, L. G. (2020). Butyrate mediates anti-inflammatory effects of Faecalibacterium prausnitzii in intestinal epithelial cells through Dact3. Gut microbes, 12(1), 1–16. https://doi.org/10.1080/19490976.2020.1826748
Falony, G., Vlachou, A., Verbrugghe, K., & De Vuyst, L. (2006). Cross-feeding between Bifidobacterium longum BB536 and acetate-converting, butyrate-producing colon bacteria during growth on oligofructose. Applied and environmental microbiology, 72(12), 7835–7841. https://doi.org/10.1128/AEM.01296-06
Mörkl S, Butler MI, Holl A, Cryan JF, Dinan TG. Probiotics and the Microbiota-Gut-Brain Axis: Focus on Psychiatry. Curr Nutr Rep. 2020 Sep;9(3):171-182. doi: 10.1007/s13668-020-00313-5. Erratum in: Curr Nutr Rep. 2020 Jun 5;: PMID: 32406013; PMCID: PMC7398953.
Donohoe, D. R., Collins, L. B., Wali, A., Bigler, R., Sun, W., & Bultman, S. J. (2012). The Warburg effect dictates the mechanism of butyrate-mediated histone acetylation and cell proliferation. Molecular cell, 48(4), 612–626. https://doi.org/10.1016/j.molcel.2012.08.033
Wu, X., Wu, Y., He, L., Wu, L., Wang, X., & Liu, Z. (2018). Effects of the intestinal microbial metabolite butyrate on the development of colorectal cancer. Journal of Cancer, 9(14), 2510–2517. https://doi.org/10.7150/jca.25324
Danby, C. S., Boikov, D., Rautemaa-Richardson, R., & Sobel, J. D. (2012). Effect of pH on in vitro susceptibility of Candida glabrata and Candida albicans to 11 antifungal agents and implications for clinical use. Antimicrobial agents and chemotherapy, 56(3), 1403–1406. https://doi.org/10.1128/AAC.05025-11
Lourenço, A., Pedro, N. A., Salazar, S. B., & Mira, N. P. (2019). Effect of Acetic Acid and Lactic Acid at Low pH in Growth and Azole Resistance of Candida albicans and Candida glabrata. Frontiers in microbiology, 9, 3265. https://doi.org/10.3389/fmicb.2018.03265
Peng, B., Su, Y. B., Li, H., Han, Y., Guo, C., Tian, Y. M., & Peng, X. X. (2015). Exogenous alanine and/or glucose plus kanamycin kills antibiotic-resistant bacteria. Cell metabolism, 21(2), 249–262. https://doi.org/10.1016/j.cmet.2015.01.008
Chang, J. H., Shim, Y. Y., Cha, S. K., Reaney, M. J. T., & Chee, K. M. (2012). Effect of Lactobacillus acidophilus KFRI342 on the development of chemically induced precancerous growths in the rat colon. Journal of medical microbiology, 61(Pt 3), 361–368. https://doi.org/10.1099/jmm.0.035154-0
Asahara, T., Shimizu, K., Nomoto, K., Hamabata, T., Ozawa, A., & Takeda, Y. (2004). Probiotic bifidobacteria protect mice from lethal infection with Shiga toxin-producing Escherichia coli O157:H7. Infection and immunity, 72(4), 2240–2247. https://doi.org/10.1128/IAI.72.4.2240-2247.2004
Chamniansawat, S., Suksridechacin, N., & Thongon, N. (2023). Current opinion on the regulation of small intestinal magnesium absorption. World journal of gastroenterology, 29(2), 332–342. https://doi.org/10.3748/wjg.v29.i2.332
Piskin, E., Cianciosi, D., Gulec, S., Tomas, M., & Capanoglu, E. (2022). Iron Absorption: Factors, Limitations, and Improvement Methods. ACS omega, 7(24), 20441–20456. https://doi.org/10.1021/acsomega.2c01833
Scharrer, E., & Lutz, T. (1990). Effects of short chain fatty acids and K on absorption of Mg and other cations by the colon and caecum. Zeitschrift fur Ernahrungswissenschaft, 29(3), 162–168. https://doi.org/10.1007/BF02021554
Hoppe, M., Önning, G., Berggren, A., & Hulthén, L. (2015). Probiotic strain Lactobacillus plantarum 299v increases iron absorption from an iron-supplemented fruit drink: a double-isotope cross-over single-blind study in women of reproductive age. The British journal of nutrition, 114(8), 1195–1202. https://doi.org/10.1017/S000711451500241X
Bergillos-Meca, T., Cabrera-Vique, C., Artacho, R., Moreno-Montoro, M., Navarro-Alarcón, M., Olalla, M., Giménez, R., Seiquer, I., & Ruiz-López, M. D. (2015). Does Lactobacillus plantarum or ultrafiltration process improve Ca, Mg, Zn and P bioavailability from fermented goats' milk?. Food chemistry, 187, 314–321. https://doi.org/10.1016/j.foodchem.2015.04.051
Li, X., & Liang, H. (2022). Effects of Lactobacillus casei on Iron Metabolism and Intestinal Microflora in Rats Exposed to Alcohol and Iron. The Turkish journal of gastroenterology : the official journal of Turkish Society of Gastroenterology, 33(6), 470–476. https://doi.org/10.5152/tjg.2022.21370
Guo, X., Zhong, K., Zou, L., Xue, H., Zheng, S., Guo, J., Lv, H., Duan, K., Huang, D., & Tan, M. (2022). Effect of Lactobacillus casei fermented milk on fracture healing in osteoporotic mice. Frontiers in endocrinology, 13, 1041647. https://doi.org/10.3389/fendo.2022.1041647
Appleton J. (2018). The Gut-Brain Axis: Influence of Microbiota on Mood and Mental Health. Integrative medicine (Encinitas, Calif.), 17(4), 28–32.
Track N. S. (1980). The gastrointestinal endocrine system. Canadian Medical Association journal, 122(3), 287–292.
Lyte M, Varcoe JJ, Bailey MT. Anxiogenic effect of subclinical bacterial infection in mice in the absence of overt immune activation. Physiol Behav. 1998 Aug;65(1):63-8. doi: 10.1016/s0031-9384(98)00145-0. PMID: 9811366.
Silva, Y. P., Bernardi, A., & Frozza, R. L. (2020). The Role of Short-Chain Fatty Acids From Gut Microbiota in Gut-Brain Communication. Frontiers in endocrinology, 11, 25. https://doi.org/10.3389/fendo.2020.00025
Caetano-Silva, M. E., Rund, L., Hutchinson, N. T., Woods, J. A., Steelman, A. J., & Johnson, R. W. (2023). Inhibition of inflammatory microglia by dietary fiber and short-chain fatty acids. Scientific reports, 13(1), 2819. https://doi.org/10.1038/s41598-022-27086-x
Steenbergen, L., Sellaro, R., van Hemert, S., Bosch, J. A., & Colzato, L. S. (2015). A randomized controlled trial to test the effect of multispecies probiotics on cognitive reactivity to sad mood. Brain, behavior, and immunity, 48, 258–264. https://doi.org/10.1016/j.bbi.2015.04.003
Wan, G., Wang, L., Zhang, G., Zhang, J., Lu, Y., Li, J., & Yi, X. (2020). Effects of probiotics combined with early enteral nutrition on endothelin-1 and C-reactive protein levels and prognosis in patients with severe traumatic brain injury. The Journal of international medical research, 48(3), 300060519888112. https://doi.org/10.1177/0300060519888112
Slykerman, R. F., Hood, F., Wickens, K., Thompson, J. M. D., Barthow, C., Murphy, R., Kang, J., Rowden, J., Stone, P., Crane, J., Stanley, T., Abels, P., Purdie, G., Maude, R., Mitchell, E. A., & Probiotic in Pregnancy Study Group (2017). Effect of Lactobacillus rhamnosus HN001 in Pregnancy on Postpartum Symptoms of Depression and Anxiety: A Randomised Double-blind Placebo-controlled Trial. EBioMedicine, 24, 159–165. https://doi.org/10.1016/j.ebiom.2017.09.013
Jackson, S. A., Schoeni, J. L., Vegge, C., Pane, M., Stahl, B., Bradley, M., Goldman, V. S., Burguière, P., Atwater, J. B., & Sanders, M. E. (2019). Improving End-User Trust in the Quality of Commercial Probiotic Products. Frontiers in microbiology, 10, 739. https://doi.org/10.3389/fmicb.2019.00739
Freedman, S. B., Finkelstein, Y., Pang, X. L., Chui, L., Tarr, P. I., VanBuren, J. M., Olsen, C., Lee, B. E., Hall-Moore, C. A., Sapien, R., O'Connell, K., Levine, A. C., Poonai, N., Roskind, C., Schuh, S., Rogers, A., Bhatt, S., Gouin, S., Mahajan, P., Vance, C., … Schnadower, D. (2022). Pathogen-Specific Effects of Probiotics in Children With Acute Gastroenteritis Seeking Emergency Care: A Randomized Trial. Clinical infectious diseases : an official publication of the Infectious Diseases Society of America, 75(1), 55–64. https://doi.org/10.1093/cid/ciab876
Besselink, M. G., van Santvoort, H. C., Buskens, E., Boermeester, M. A., van Goor, H., Timmerman, H. M., Nieuwenhuijs, V. B., Bollen, T. L., van Ramshorst, B., Witteman, B. J., Rosman, C., Ploeg, R. J., Brink, M. A., Schaapherder, A. F., Dejong, C. H., Wahab, P. J., van Laarhoven, C. J., van der Harst, E., van Eijck, C. H., Cuesta, M. A., … Dutch Acute Pancreatitis Study Group (2008). Probiotic prophylaxis in predicted severe acute pancreatitis: a randomised, double-blind, placebo-controlled trial. Lancet (London, England), 371(9613), 651–659. https://doi.org/10.1016/S0140-6736(08)60207-X
McFarland, L. V., Evans, C. T., & Goldstein, E. J. C. (2018). Strain-Specificity and Disease-Specificity of Probiotic Efficacy: A Systematic Review and Meta-Analysis. Frontiers in medicine, 5, 124. https://doi.org/10.3389/fmed.2018.00124
Million, M., Angelakis, E., Paul, M., Armougom, F., Leibovici, L., & Raoult, D. (2012). Comparative meta-analysis of the effect of Lactobacillus species on weight gain in humans and animals. Microbial pathogenesis, 53(2), 100–108. https://doi.org/10.1016/j.micpath.2012.05.007
Kothari, D., Patel, S., & Kim, S. K. (2019). Probiotic supplements might not be universally-effective and safe: A review. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie, 111, 537–547. https://doi.org/10.1016/j.biopha.2018.12.104
Downloads
Published
Conference Proceedings Volume
Section
License
Copyright (c) 2024 Highlights in Science, Engineering and Technology

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.