Electrochemical Performance of Coal-Based Needle Coke Anode for Lithium Ion Batteries

Authors

  • Yuan Gao
  • Jing Xia
  • Cuifeng Mu
  • Dakui Zhang
  • Shuxiang Li
  • Zhanqiang Xue

DOI:

https://doi.org/10.54097/bynbsz72

Keywords:

Needle Coke, Lithium Ion Batteries, Coal-Based Coke, Anode Materials.

Abstract

Lithium-ion capacitors (LICs) with the capability of high energy and high power are considered to be attractive for advanced energy storage applications. However, the design and fabrication of suitable electrode materials with desirab-le properties by a facile approach using cost-effective precursors are still a great challenge. In this work, we have utilized needle cokes, an commercial carbon material with high carbon content and soft carbon structure, as a single carbon source for anode material. A lithium-ion battery fabricated using four kinds of needle cokes exhibits a maximum high energy density of 1357mAhg-1. Systematic characterization analysis demonstrates that unique characteristics of the green coke including large interlayer spacing, turbostratic and disordered microstructures that are composed of surface defects, nanopores or voids, and graphitic domains. That contribute synergistically to the outstanding performance of the needle coke-based LIC. More importantly, anode materials from a single source is an effective way for high value-added utilization of needle coke at the commercial level.

Downloads

Download data is not yet available.

References

[1] Ma, Z.-F.; Yuan, X.-Z.; Li, D.; Liao, X.-Z.; Hu, H.-P.; Ma, J.-Q.; Wang, J.-F., Structural and electrochemical characterization of carbonaceous mesophase spherule anode material for rechargeable lithium batteries. Electrochemistry Communications 2002, 4 (2), 188-192. DOI: https://doi.org/10.1016/S1388-2481(01)00303-4

[2] Wang, Y.-G.; Egashira, M.; Ishida, S.; Korai, Y.; Mochida, I., Microstructure of mesocarbon microbeads prepared from synthetic isotropic naphthalene pitch in the presence of carbon black. Carbon 1999, 37 (2), 307-314. DOI: https://doi.org/10.1016/S0008-6223(98)00179-1

[3] Imanishi, N.; Kashiwagi, H.; Ichikawa, T.; Takeda, Y.; Yamamoto, O.; Inagaki, M., Charge‐Discharge Characteristics of Mesophase‐Pitch‐Based Carbon Fibers for Lithium Cells. Journal of The Electrochemical Society 1993, 140 (2), 315-320. DOI: https://doi.org/10.1149/1.2221044

[4] Azuma, H.; Imoto, H.; Yamada, S. i.; Sekai, K., Advanced carbon anode materials for lithium ion cells. Journal of Power Sources 1999, 81–82, 1-7. DOI: https://doi.org/10.1016/S0378-7753(99)00122-6

[5] Cao, F.; Barsukov, I. V.; Bang, H. J.; Zaleski, P.; Prakash, J., Evaluation of Graphite Materials as Anodes for Lithium-Ion Batteries. Journal of The Electrochemical Society 2000, 147 (10), 3579. DOI: https://doi.org/10.1149/1.1393942

[6] Brooks, J. D.; Taylor, G. H., The formation of graphitizing carbons from the liquid phase. Carbon 1965, 3 (2), 185-193. DOI: https://doi.org/10.1016/0008-6223(65)90047-3

[7] Kang, H.-G.; Park, J.-K.; Han, B.-S.; Lee, H., Electrochemical characteristics of needle coke refined by molten caustic leaching as an anode material for a lithium-ion battery. Journal of Power Sources 2006, 153 (1), 170-173. DOI: https://doi.org/10.1016/j.jpowsour.2005.03.139

[8] Li, H.; Li, W., Improving cycle life and rate capability of artificial graphite anode for lithium-ion batteries by agglomeration. Materials Letters 2022, 318, 132227. DOI: https://doi.org/10.1016/j.matlet.2022.132227

[9] Popova, A. N., Crystallographic analysis of graphite by X-Ray diffraction. Coke and Chemistry 2017, 60 (9), 361-365. DOI: https://doi.org/10.3103/S1068364X17090058

[10] Ismagilov, Z. R.; Sozinov, S. A.; Popova, A. N.; Zaporin, V. P., Structural Analysis of Needle Coke. Coke and Chemistry 2019, 62 (4), 135-142. DOI: https://doi.org/10.3103/S1068364X19040021

[11] Iwashita, N.; Park, C. R.; Fujimoto, H.; Shiraishi, M.; Inagaki, M., Specification for a standard procedure of X-ray diffraction measurements on carbon materials. Carbon 2004, 42 (4), 701-714. DOI: https://doi.org/10.1016/j.carbon.2004.02.008

[12] Chen, K.; Zhang, H.; Ibrahim, U.-K.; Xue, W.; Liu, H.; Guo, A., The quantitative assessment of coke morphology based on the Raman spectroscopic characterization of serial petroleum cokes. Fuel 2019, 246, 60-68. DOI: https://doi.org/10.1016/j.fuel.2019.02.096

[13] Wang, C.; Zhao, H.; Wang, J.; Wang, J.; Lv, P., Electrochemical performance of modified artificial graphite as anode material for lithium ion batteries. Ionics 2013, 19 (2), 221-226. DOI: https://doi.org/10.1007/s11581-012-0733-9

[14] Veluri, P. S.; Katchala, N.; Anandan, S.; Pramanik, M.; NarayanSrinivasan, K.; Ravi, B.; N. Rao, T., Petroleum Coke as an Efficient Single Carbon Source for High-Energy and High-Power Lithium-Ion Capacitors. Energy & Fuels 2021, 35, 9010-9016. DOI: https://doi.org/10.1021/acs.energyfuels.1c00665

[15] Jiang, W.; Tran, T.; Song, X.; Kinoshita, K., Thermal and electrochemical studies of carbons for Li-ion batteries: 1. Thermal analysis of petroleum and pitch cokes. Journal of Power Sources 2000, 85 (2), 261-268. DOI: https://doi.org/10.1016/S0378-7753(99)00342-0

[16] Kondrasheva, N. K.; Rudko, V. A.; Ancheyta, J., Thermogravimetric Determination of the Kinetics of Petroleum Needle Coke Formation by Decantoil Thermolysis. ACS Omega 2020, 5 (45), 29570-29576. DOI: https://doi.org/10.1021/acsomega.0c04552

[17] Zhang, Z.; Huang, X.; Zhang, L.; Guo, S.; Du, H.; Chen, Z.; Wu, B.; Li, G.; Liu, D., Study on the evolution of oxygenated structures in low-temperature coal tar during the preparation of needle coke by co-carbonization. Fuel 2022, 307, 121811. DOI: https://doi.org/10.1016/j.fuel.2021.121811

[18] Tran, T.; Yebka, B.; Song, X.; Nazri, G.; Kinoshita, K.; Curtis, D., Thermal and electrochemical studies of carbons for Li-ion batteries: 2. Correlation of active sites and irreversible capacity loss. Journal of Power Sources 2000, 85 (2), 269-278. DOI: https://doi.org/10.1016/S0378-7753(99)00343-2

[19] Ren, W.; Zhang, Z.; Wang, Y.; Kan, G.; Tan, Q.; Zhong, Z.; Su, F., Preparation of porous carbon microspheres anode materials from fine needle coke powders for lithium-ion batteries. RSC Advances 2015, 5 (15), 11115-11123. DOI: https://doi.org/10.1039/C4RA15321A

[20] Moradi, B.; Botte, G. G., Recycling of graphite anodes for the next generation of lithium ion batteries. Journal of Applied Electrochemistry 2016, 46 (2), 123-148. DOI: https://doi.org/10.1007/s10800-015-0914-0

[21] Wang, L.; Li, Z.; Du, C.; Han, Y.; Yang, J., High-temperature graphitization of coke and lithium storage properties of coke-based graphite. International Journal of Coal Preparation and Utilization 2023, 1-18. DOI: https://doi.org/10.1080/19392699.2023.2168656

Downloads

Published

27-09-2024

How to Cite

Gao, Y., Xia, J., Mu, C., Zhang, D., Li, S., & Xue, Z. (2024). Electrochemical Performance of Coal-Based Needle Coke Anode for Lithium Ion Batteries. Highlights in Science, Engineering and Technology, 117, 29-36. https://doi.org/10.54097/bynbsz72