The Effect of Binder on the Electrochemical Property of Silicon/carbon Anode

Authors

  • Jing Xia
  • Shuxiang Li
  • Yuan Gao
  • Dakui Zhang
  • Chunfeng Mu
  • Zhanqiang Xue

DOI:

https://doi.org/10.54097/9yty6721

Keywords:

Silicon/carbon anode, Lithium ion batteries, Binder.

Abstract

 In this research, needle coke, graphite and silicon nanosheet were bonded by pitch or glucose to prepare the Si/C composite anode. The influence of binder on the microstructure and electrochemical property of Si/C anode was discussed. The sample using pitch as binder has smooth surface and is densely coated by pitch. The silicon is exposed on the surface of Si/C compound using glucose as the binder. Compared with pitch-based Si/C anode, glucose-based Si/C anode shows higher initial capacity and coulombic efficiency, but it’s capacity retention ratio is lower. The initial capacity, initial coulombic efficiency and capacity after 100 cycles of the glucose-based anode are 655.3 mAh/g, 70.3% and 474.0 mAh/g, respectively. Those of pitch-based anode are 555.8 mAh/g, 62.4% and 538.8 mAh/g, respectively. Using different binders leads to distinct microstructure, impedance and irreversible reaction, which finally causes the varying capacities and initial coulombic efficiency of anodes

Downloads

Download data is not yet available.

References

[1] Kötz, R. and M. Carlen, Principles and applications of electrochemical capacitors. Electrochimica Acta, 2000. 45(15): p. 2483-2498. DOI: https://doi.org/10.1016/S0013-4686(00)00354-6

[2] Frackowiak, E. and F. Béguin, Carbon materials for the electrochemical storage of energy in capacitors. Carbon, 2001. 39(6): p. 937-950. DOI: https://doi.org/10.1016/S0008-6223(00)00183-4

[3] Zalba, B., et al., Review on thermal energy storage with phase change: materials, heat transfer analysis and applications. Applied Thermal Engineering, 2003. 23(3): p. 251-283. DOI: https://doi.org/10.1016/S1359-4311(02)00192-8

[4] Winter, M. and R.J. Brodd, What Are Batteries, Fuel Cells, and Supercapacitors? Chemical Reviews, 2004. 104(10): p. 4245-4270. DOI: https://doi.org/10.1021/cr020730k

[5] Aricò, A.S., et al., Nanostructured materials for advanced energy conversion and storage devices. Nature Materials, 2005. 4(5): p. 366-377. DOI: https://doi.org/10.1038/nmat1368

[6] Bruce, P.G., B. Scrosati, and J.-M. Tarascon, Nanomaterials for Rechargeable Lithium Batteries. 2008. 47(16): p. 2930-2946. DOI: https://doi.org/10.1002/anie.200702505

[7] Tarascon, J.M. and M. Armand, Issues and challenges facing rechargeable lithium batteries. Nature, 2001. 414(6861): p. 359-367. DOI: https://doi.org/10.1038/35104644

[8] Whittingham, M.S., Lithium Batteries and Cathode Materials. Chemical Reviews, 2004. 104(10): p. 4271-4302. DOI: https://doi.org/10.1021/cr020731c

[9] Wilson, A.M. and J.R. Dahn, Lithium Insertion in Carbons Containing Nanodispersed Silicon. Journal of The Electrochemical Society, 1995. 142(2): p. 326. DOI: https://doi.org/10.1149/1.2043994

[10] Saint, J., et al., Towards a Fundamental Understanding of the Improved Electrochemical Performance of Silicon–Carbon Composites. 2007. 17(11): p. 1765-1774. DOI: https://doi.org/10.1002/adfm.200600937

[11] Guo, Z.P., et al., Optimizing synthesis of silicon/disordered carbon composites for use as anode materials in lithium-ion batteries. Journal of Power Sources, 2006. 159(1): p. 332-335. DOI: https://doi.org/10.1016/j.jpowsour.2006.04.043

[12] Zhang, R., et al., Highly Reversible and Large Lithium Storage in Mesoporous Si/C Nanocomposite Anodes with Silicon Nanoparticles Embedded in a Carbon Framework. 2014. 26(39): p. 6749-6755. DOI: https://doi.org/10.1002/adma.201402813

[13] Kim, H. and J. Cho, Superior Lithium Electroactive Mesoporous Si@Carbon Core−Shell Nanowires for Lithium Battery Anode Material. Nano Letters, 2008. 8(11): p. 3688-3691. DOI: https://doi.org/10.1021/nl801853x

[14] Dimov, N., S. Kugino, and M. Yoshio, Carbon-coated silicon as anode material for lithium ion batteries: advantages and limitations. Electrochimica Acta, 2003. 48(11): p. 1579-1587. DOI: https://doi.org/10.1016/S0013-4686(03)00030-6

[15] Xu, Q., et al., Watermelon-Inspired Si/C Microspheres with Hierarchical Buffer Structures for Densely Compacted Lithium-Ion Battery Anodes. 2017. 7(3): p. 1601481. DOI: https://doi.org/10.1002/aenm.201601481

[16] Liu, N., et al., A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes. Nature Nanotechnology, 2014. 9(3): p. 187-192. DOI: https://doi.org/10.1038/nnano.2014.6

[17] Kim, H., et al., Three-Dimensional Porous Silicon Particles for Use in High-Performance Lithium Secondary Batteries. 2008. 47(52): p. 10151-10154. DOI: https://doi.org/10.1002/anie.200804355

[18] Lee, J.-H., et al., Spherical silicon/graphite/carbon composites as anode material for lithium-ion batteries. Journal of Power Sources, 2008. 176(1): p. 353-358. DOI: https://doi.org/10.1016/j.jpowsour.2007.09.119

[19] Ko, M., et al., Scalable synthesis of silicon-nanolayer-embedded graphite for high-energy lithium-ion batteries. Nature Energy, 2016. 1(9): p. 16113. DOI: https://doi.org/10.1038/nenergy.2016.113

[20] Jing, X., et al., Preparation of mesophase-pitch-based graphite foams at atmospheric pressure. 2024. 13(1): p. 1-9. DOI: https://doi.org/10.1680/jemmr.23.00037

[21] Gupta, R., et al., Laser-Induced Fano Resonance Scattering in Silicon Nanowires. Nano Letters, 2003. 3(5): p. 627-631. DOI: https://doi.org/10.1021/nl0341133

[22] xia, J., et al., Intercalation of copper microparticles in an expanded graphite film with improved through-plane thermal conductivity. Journal of Materials Science, 2020. 55(17): p. 7351-7358. DOI: https://doi.org/10.1007/s10853-020-04533-6

Downloads

Published

27-09-2024

How to Cite

Xia, J., Li, S., Gao, Y., Zhang, D., Mu, C., & Xue, Z. (2024). The Effect of Binder on the Electrochemical Property of Silicon/carbon Anode. Highlights in Science, Engineering and Technology, 117, 37-42. https://doi.org/10.54097/9yty6721