The Effect of Binder on the Electrochemical Property of Silicon/carbon Anode
DOI:
https://doi.org/10.54097/9yty6721Keywords:
Silicon/carbon anode, Lithium ion batteries, Binder.Abstract
In this research, needle coke, graphite and silicon nanosheet were bonded by pitch or glucose to prepare the Si/C composite anode. The influence of binder on the microstructure and electrochemical property of Si/C anode was discussed. The sample using pitch as binder has smooth surface and is densely coated by pitch. The silicon is exposed on the surface of Si/C compound using glucose as the binder. Compared with pitch-based Si/C anode, glucose-based Si/C anode shows higher initial capacity and coulombic efficiency, but it’s capacity retention ratio is lower. The initial capacity, initial coulombic efficiency and capacity after 100 cycles of the glucose-based anode are 655.3 mAh/g, 70.3% and 474.0 mAh/g, respectively. Those of pitch-based anode are 555.8 mAh/g, 62.4% and 538.8 mAh/g, respectively. Using different binders leads to distinct microstructure, impedance and irreversible reaction, which finally causes the varying capacities and initial coulombic efficiency of anodes
Downloads
References
[1] Kötz, R. and M. Carlen, Principles and applications of electrochemical capacitors. Electrochimica Acta, 2000. 45(15): p. 2483-2498. DOI: https://doi.org/10.1016/S0013-4686(00)00354-6
[2] Frackowiak, E. and F. Béguin, Carbon materials for the electrochemical storage of energy in capacitors. Carbon, 2001. 39(6): p. 937-950. DOI: https://doi.org/10.1016/S0008-6223(00)00183-4
[3] Zalba, B., et al., Review on thermal energy storage with phase change: materials, heat transfer analysis and applications. Applied Thermal Engineering, 2003. 23(3): p. 251-283. DOI: https://doi.org/10.1016/S1359-4311(02)00192-8
[4] Winter, M. and R.J. Brodd, What Are Batteries, Fuel Cells, and Supercapacitors? Chemical Reviews, 2004. 104(10): p. 4245-4270. DOI: https://doi.org/10.1021/cr020730k
[5] Aricò, A.S., et al., Nanostructured materials for advanced energy conversion and storage devices. Nature Materials, 2005. 4(5): p. 366-377. DOI: https://doi.org/10.1038/nmat1368
[6] Bruce, P.G., B. Scrosati, and J.-M. Tarascon, Nanomaterials for Rechargeable Lithium Batteries. 2008. 47(16): p. 2930-2946. DOI: https://doi.org/10.1002/anie.200702505
[7] Tarascon, J.M. and M. Armand, Issues and challenges facing rechargeable lithium batteries. Nature, 2001. 414(6861): p. 359-367. DOI: https://doi.org/10.1038/35104644
[8] Whittingham, M.S., Lithium Batteries and Cathode Materials. Chemical Reviews, 2004. 104(10): p. 4271-4302. DOI: https://doi.org/10.1021/cr020731c
[9] Wilson, A.M. and J.R. Dahn, Lithium Insertion in Carbons Containing Nanodispersed Silicon. Journal of The Electrochemical Society, 1995. 142(2): p. 326. DOI: https://doi.org/10.1149/1.2043994
[10] Saint, J., et al., Towards a Fundamental Understanding of the Improved Electrochemical Performance of Silicon–Carbon Composites. 2007. 17(11): p. 1765-1774. DOI: https://doi.org/10.1002/adfm.200600937
[11] Guo, Z.P., et al., Optimizing synthesis of silicon/disordered carbon composites for use as anode materials in lithium-ion batteries. Journal of Power Sources, 2006. 159(1): p. 332-335. DOI: https://doi.org/10.1016/j.jpowsour.2006.04.043
[12] Zhang, R., et al., Highly Reversible and Large Lithium Storage in Mesoporous Si/C Nanocomposite Anodes with Silicon Nanoparticles Embedded in a Carbon Framework. 2014. 26(39): p. 6749-6755. DOI: https://doi.org/10.1002/adma.201402813
[13] Kim, H. and J. Cho, Superior Lithium Electroactive Mesoporous Si@Carbon Core−Shell Nanowires for Lithium Battery Anode Material. Nano Letters, 2008. 8(11): p. 3688-3691. DOI: https://doi.org/10.1021/nl801853x
[14] Dimov, N., S. Kugino, and M. Yoshio, Carbon-coated silicon as anode material for lithium ion batteries: advantages and limitations. Electrochimica Acta, 2003. 48(11): p. 1579-1587. DOI: https://doi.org/10.1016/S0013-4686(03)00030-6
[15] Xu, Q., et al., Watermelon-Inspired Si/C Microspheres with Hierarchical Buffer Structures for Densely Compacted Lithium-Ion Battery Anodes. 2017. 7(3): p. 1601481. DOI: https://doi.org/10.1002/aenm.201601481
[16] Liu, N., et al., A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes. Nature Nanotechnology, 2014. 9(3): p. 187-192. DOI: https://doi.org/10.1038/nnano.2014.6
[17] Kim, H., et al., Three-Dimensional Porous Silicon Particles for Use in High-Performance Lithium Secondary Batteries. 2008. 47(52): p. 10151-10154. DOI: https://doi.org/10.1002/anie.200804355
[18] Lee, J.-H., et al., Spherical silicon/graphite/carbon composites as anode material for lithium-ion batteries. Journal of Power Sources, 2008. 176(1): p. 353-358. DOI: https://doi.org/10.1016/j.jpowsour.2007.09.119
[19] Ko, M., et al., Scalable synthesis of silicon-nanolayer-embedded graphite for high-energy lithium-ion batteries. Nature Energy, 2016. 1(9): p. 16113. DOI: https://doi.org/10.1038/nenergy.2016.113
[20] Jing, X., et al., Preparation of mesophase-pitch-based graphite foams at atmospheric pressure. 2024. 13(1): p. 1-9. DOI: https://doi.org/10.1680/jemmr.23.00037
[21] Gupta, R., et al., Laser-Induced Fano Resonance Scattering in Silicon Nanowires. Nano Letters, 2003. 3(5): p. 627-631. DOI: https://doi.org/10.1021/nl0341133
[22] xia, J., et al., Intercalation of copper microparticles in an expanded graphite film with improved through-plane thermal conductivity. Journal of Materials Science, 2020. 55(17): p. 7351-7358. DOI: https://doi.org/10.1007/s10853-020-04533-6
Downloads
Published
Conference Proceedings Volume
Section
License
Copyright (c) 2024 Highlights in Science, Engineering and Technology
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.