Research Progress on Modification of Cathode Materials for Polyanionic Sodium-Ion Batteries
DOI:
https://doi.org/10.54097/y0d19e09Keywords:
Polyanion, Sodium-Ion Batteries, Adulterate, Surface Cladding, Structural Design.Abstract
As one of the main anode materials for sodium-ion batteries, polyanionic anode materials for sodium-ion batteries have the advantages of long cycle life, high safety, low price and suitable for large-scale energy storage, but there are also problems such as low energy density and low conductivity. In order to optimize the energy density, conductivity, service life and other properties of polyanionic sodium ion cathode materials, doping, surface coating and structural design are needed to modify them. Reasonable modification methods have been proved to significantly improve the properties of materials. In this paper, phosphate, sulfate and other types of polyanionic sodium-ion batteries are first introduced, then the latest research results of element doping, surface coating and structural design are reviewed, and the existing research results are evaluated. Finally, the modification methods of the positive electrode materials of polyanionic sodium-ion batteries are prospected, which provides important research ideas for the commercial application of sodium-ion batteries in the future.
Downloads
References
[1] M.L. Xu, M.C. Liu, Z.Z. Yang, et al, Research Progress of Prenatrification Technology for High Specific energy Sodium-Ion Batteries, J. Chinese Journal of Physical Chemistry. 39,03 (2023) 33-48. (In Chinese)
[2] R. Essehli. H.B. Yahia, R. Amin, et al, Sodium Rich Vanadium Oxy-Fluorophosphate – Na3.2Ni0.2V1.8(PO4)2F2O – as Advanced Cathode for Sodium-Ion Batteries, J. Advanced Science. 10,22 (2023) 2301091. DOI: https://doi.org/10.1002/advs.202301091
[3] H. Li, M. Xu, Z. Zhang, et al, Engineering of Polyanion Type Cathode Materials for Sodium-Ion Batteries: Toward Higher Energy/Power Density, J. Advanced Functional Materials. 30,28 (2020) 2000473. DOI: https://doi.org/10.1002/adfm.202000473
[4] Y. Gao, Z. Pan, J. Sun, et al, High-Energy Batteries: Beyond Lithium-Ion and Their Long Road to Commercialisation, J. Nano-Micro Letters. 14,1 (2022) 94. DOI: https://doi.org/10.1007/s40820-022-00844-2
[5] W.L. Pan, W.H. Guan, Y.Z. Jiang, Research Progress of Cathode Materials for Polyanionic Sodium-Ion Batteries, J. Acta Physico-Chimica Sinica. 36,05 (2019) 69-80. (In Chinese)
[6] Z.Y, Zhu, P. Dong, J.F. Zhang, et al, Research Progress on Modification of Cathode Materials for a new Generation of energy Storage Sodium-Ion Batteries, J. Chemical Industry Progress. 39,03 (2020) 1043-1056. (In Chinese)
[7] T. Or, S.W.D. Gourley, K. Kaliyappan, et al, Recent Progress in Surface Coatings for Sodium-Ion Battery Electrode Materials, J. Electrochemical Energy Reviews. 5,1 (2022) 20. DOI: https://doi.org/10.1007/s41918-022-00137-7
[8] A.N. Singh, M. Islam, A. Meena, et al, Unleashing the Potential of Sodium-Ion Batteries: Current State and Future Directions for Sustainable Energy Storage, J. Advanced Functional Materials. 56,1 (2023) 2304617. DOI: https://doi.org/10.1002/adfm.202304617
[9] Z. Gu, J. Guo, X. Zhao, et al, High-ionicity fluorophosphate lattice via aliovalent substitution as advanced cathode materials in sodium-ion batteries, J. InfoMat. 3,6 (2021) 694-704. DOI: https://doi.org/10.1002/inf2.12184
[10] Q. Yan, Y.Q. Lan, W.J. Yao, et al, Research Progress of Cathode Materials for Polyanionic Secondary-Ion Batteries, J. Energy Storage Science and Technology. 10,03 (2021) 872-886. (In Chinese)
[11] C. Li, M. Qiu, R. Li, et al, Electrospinning Engineering Enables High-Performance Sodium-Ion Batteries, J. Advanced Fiber Materials. 4,1 (2022) 43-65. DOI: https://doi.org/10.1007/s42765-021-00088-6
[12] Y. Gao, H. Zhang, X. Liu, et al, Low-Cost Polyanion-Type Sulfate Cathode for Sodium-Ion Battery, J. Advanced Energy Materials. 11,42 (2021) 2101751. DOI: https://doi.org/10.1002/aenm.202101751
[13] B. Senthilkumar, C. Murugesan, L. Sharma, et al, An Overview of Mixed Polyanionic Cathode Materials for Sodium-Ion Batteries, J. Small Methods. 3,4 (2019) 1800253. DOI: https://doi.org/10.1002/smtd.201800253
[14] K. Kang, et al: ChemInform Abstract, New Iron-Based Mixed-Polyanion Cathodes for Lithium and Sodium Rechargeable Batteries: Combined First Principles Calculations and Experimental Study, J. ChemInform. 43,46 (2012). DOI: https://doi.org/10.1002/chin.201246013
[15] K. Saravanan, C. W. Mason, A. Rudola, et al, The First Report on Excellent Cycling Stability and Superior Rate Capability of Na3V2(PO4)3 for Sodium Ion Batteries, J. Advanced Energy Materials. 3,4 (2013) 444-450. DOI: https://doi.org/10.1002/aenm.201200803
[16] S. Li, X. Song, X. Kuai, et al, A nanoarchitectured Na6Fe5(SO4)8/CNTs cathode for building a low-cost 3.6 V sodium-ion full battery with superior sodium storage, J. Journal of Materials Chemistry A. 7,24 (2019) 14656-14669. DOI: https://doi.org/10.1039/C9TA03089A
[17] P. Barpanda, G. Oyama, C.D. Ling, et al, Kröhnkite-Type Na2Fe(SO4)2·2H2O as a Novel 3.25 V Insertion Compound for Na-Ion Batteries, J. Chemistry of Materials. 26,3 (2014) 1297-1299. DOI: https://doi.org/10.1021/cm4033226
[18] M. Kim, D. Kim, W. Lee, et al, New Class of 3.7 V Fe-Based Positive Electrode Materials for Na-Ion Battery Based on Cation-Disordered Polyanion Framework, J. Chemistry of Materials. 30,18 (2018) 6346-6352. DOI: https://doi.org/10.1021/acs.chemmater.8b02354
[19] A. Pramanik, A.J. Bradford, S.L. Lee, et al, Na2Fe(C2O4)(HPO4): a promising new oxalate-phosphate based mixed polyanionic cathode for Li/Na ion batteries, J. Journal of Physics: Materials. 4,2 (2021) 24004. DOI: https://doi.org/10.1088/2515-7639/abe5f9
[20] T. Song, W. Yao, P. Kiadkhunthod, et al, A Low-Cost and Environmentally Friendly Mixed Polyanionic Cathode for Sodium-Ion Storage, J. Angewandte Chemie International Edition. 59 ,2 (2020) 740-745. DOI: https://doi.org/10.1002/anie.201912272
[21] L. Xiao, F. Ji, J. Zhang, et al, Doping Regulation in Polyanionic Compounds for Advanced Sodium-Ion Batteries, J. Small. 19,1 (2023) 2205732. DOI: https://doi.org/10.1002/smll.202205732
[22] Z.N, Zhang, J. Chen, Preparation and Properties of Cathode Materials for NB-doped Na3V2O2 (PO4) 2F Hollow Microspheres for Sodium-Ion Batteries, J. Energy Storage Science and Technology. 12,08 (2019) 2370-2381. (In Chinese)
[23] Y.F. Zhao, Z.D. Yang, F. Li, et al, Preparation and Properties of Cathode Materials for Na_3V_2(PO_4)2F_3 Sodium-Ion Batteries Coated with Nitrogen Doped Carbon, J. Energy Storage Science and Technology. 11,06 (2022) 1883-1891. (In Chinese)
[24] M. Chen, L. Chen, Z. Hu, et al, Carbon-Coated Na3.32Fe2.34(P2O7)2 Cathode Material for High-Rate and Long-Life Sodium-Ion Batteries, J. Advanced Materials. 29,21 (2017) 1605535. DOI: https://doi.org/10.1002/adma.201605535
[25] L.M. Zhang, Preparation and Characterization of Cathode Materials for Phosphate System Polyanionic Lithium/Sodium-Ion Batteries, D. University of Science and Technology of China. (2022) 125. (In Chinese)
[26] J. Ren, H. Zhu, Y. Fang, et al, Typical cathode materials for lithium-ion and sodium-ion batteries: From structural design to performance optimization, J. Carbon Neutralization. 2,3 (2023) 339-377. DOI: https://doi.org/10.1002/cnl2.62
[27] N. Jiang, X. Wang, H. Zhou, et al, Achieving Fast and Stable Sodium Storage in Na4Fe3(PO4)2(P2O7) via Entropy Engineering, J. Small. 8,1 (2024) 2308681.
[28] M.T. Ahsan, Z. Ali, M. Usman, et al, Unfolding the structural features of NASICON materials for sodium-ion full cells, J. Carbon Energy. 4,5 (2022) 776-819. DOI: https://doi.org/10.1002/cey2.222
[29] Z.Y. Gu, J.Z. Guo, Y. Yang, et al, Controlled Synthesis and Electrochemical Performance Optimization of Cathode Material Na_3V_2(PO_4)2O_2F for Sodium-Ion Batteries, J. Journal of Inorganic Chemistry. 34,09 (2018) 1641-1648. (In Chinese)
Downloads
Published
Conference Proceedings Volume
Section
License
Copyright (c) 2024 Highlights in Science, Engineering and Technology
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.