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Abstract. Deep learning is widely used in various fields due to the advancement of algorithms, the 
enrichment of high-efficiency databases, and the increase in computing power. Especially in the 
satellite communication, the learning and parallel computing capabilities of neural networks make 
them ideal for decoding. Many researchers have recently applied deep learning neural networks to 
decode high-density parity check (HDPC) codes (such as BCH and RS code), improving the 
decoder’s performance. This review aims to provide general insights on applying neural network 
decoders to satellite communications. Due to the neural network’s learning ability, the neural 
network-based decoder can be trained to change the weights, thereby reducing the influence of non-
white noise in satellite communications, such as the influence between the satellite and the terrestrial 
network and the mutual interference within the satellites. To compensate for non-white noise, 
shortest circles in Tanner graph and unreliable information, a decoder system model for satellite 
communication constructed by three neural networks is presented. 

Keywords: Channel coding, BCH code, Satellite communication, Error-correcting Coding, Neural 
network. 

1. Introduction 

Internet speed and network security requirements have increased as autonomous driving, and the 

Internet of Things (IoT) have developed in recent years. As one of the significant Error Correction 

Codes, BCH codes can correct many random errors, making it the most substantial and well-studied 

High-Density Parity Check codes (HDPC). A multi-base BCH code that can also fix multiple symbol 

problems is the Reed-Solomon code (RS code). At the same time, deep learning has also become a 

research hotspot and has been applied to data analysis, speech recognition, image recognition, and 

other fields. The fitting and expressive abilities of neural networks are potent, and deep learning is 

suitable for HDPC decoding [1,2]. 

In 1948, through the seminal publication “A Mathematical Theory of Communication,” Shannon 

initially put forward a strategy to ensure dependable communication in disrupted channels [4]. This 

famous disturbed channel coding theorem created the groundwork for error-correcting codes. 

Shannon found that the maximum speed at which data can be transmitted without error within any 

communication channel is related to noise and bandwidth. This maximum bit rate represents the 

channel capacity, now known as the Shannon limit. In order to improve the reliability and 

effectiveness of information transmission in satellite communication, researchers have been seeking 

to implement better coding and decoding methods with appropriate complexity to approach the ideal 

bounds of Shannon’s theory. 

In 1950, Hamming proposed an error-correcting linear block code, the Hamming code. In 1954, 

Muller and Reed proposed an RM (Reed-Muller) code with more vital error correction ability than 

Hamming code. In 1960, Hocquenghem, Bose, and Ray-Chaudhuri proposed a cyclic code with 

robust error correction ability in their paper, which was named after the initials of the three, namely 

BCH (Bose–Chaudhuri–Hocquenghem) code [5,6]. It’s a type of cyclic code that can remedy random 

faults. Around 1960, Peterson theoretically solved the decoding algorithm of binary BCH code. He 

theoretically realized encoding, decoding, and error correction by constructing polynomials in Galois 

fields [7]. In 1965, Berlekamp developed an innovative decoding technique that could nearly 8-times 
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improve the decoder’s speed and reduce its storage needs by roughly 4 times [8]. Massey simplified 

the decoding process in 1969 by applying it to the linear feedback shift register. The combination of 

the two great works is the so-called Berlekamp-Massey algorithm nowadays (BM algorithm). For 

low-density parity check code (LDPC) decoding, Tanner [9] proposed a Tanner graph in 1981. 

Parallel decoding can significantly reduce decoding complexity. Pearl [10] suggested a belief 

propagation (BP) algorithm in 1982. According to the BP method, each node in a Markov random 

field has a probability distribution state, which is transferred to neighbouring nodes through message 

propagation and changes their probability distribution state. Each node’s probability distribution will 

reach a stable state after a predetermined number of rounds. After that, the researchers found that 

combining BP and Tanner graphs can further enhance the efficiency of LDPC decoding. Belief 

propagation decoding algorithm became a hot research topic at that time. The belief propagation 

decoding algorithm is a Tanner graph-based iterative decoding technique. Iteratively, dependability 

information is transferred back and forth between variable nodes and check nodes via edges of the 

Tanner graph, which eventually converges to a stable value after many iterations, and the optimal 

option is determined. In LDPC decoding, the BP decoding method performs admirably. Many 

researchers have attempted to improve the BP algorithm by applying it to HDPC decoding. 

Due to the learning capability of neural networks, the new decoder built with neural networks can 

attenuate the effects of non-white noise in the environment. Due to the high integration of satellites 

and shared channels [3], there will be much non-white noise in the channel. And these non-white 

noises can be analyzed and learned by neural networks to reduce their impact. Compared with 

traditional BCH decoding, based on neural networks, this paper presents a decoding system model 

with stronger decoding and anti-interference ability. This article’s innovation is combining three 

neural networks with different functions to build a better decoder than traditional decoders in satellite 

communications from three aspects: compensating for non-white noise, classifying variable nodes 

and reducing shortest circles. This decoding system model is mainly used to solve the increasing 

signal interference between satellite and terrestrial users. This paper will first introduce the principles 

of BCH codes and RS codes and their traditional encoding and decoding methods. Three new 

decoders that introduce neural networks over traditional decoding methods will be introduced later. 

Finally, a comparative analysis of the three neural network decoders will be carried out, and the three 

will be combined to form a decoder system. 

2. Principles of BCH coding and RS coding 

2.1. The coding principle of BCH 

In order to understand the working principle of the BCH code, it is first necessary to understand 

the coding principle of the BCH code. Like other error correction codes, BCH encoding converts the 

information to be sent by the source into codewords with redundant bits. BCH decoding is to convert 

the received codeword into the information sent by the source and perform error correction. The BCH 

coding and decoding procedures usually use Galois filed 𝐺𝐹(𝑞)  for convenient byte-oriented 

processing on computers. For binary BCH codes, 𝐺𝐹(2𝑚) is often used, where m is a positive 

integer. Let 𝛼  be the generator of 𝐺𝐹(2𝑚) . The generator must be such that the values 

{𝛼0, 𝛼1, 𝛼2, . . . , 𝛼𝐹−1} are all unique and non-zero, where F is the size of the Galois field. Add zero 

element 0 to form the extended field 𝐺𝐹(2𝑚). 

Let the BCH codeword has 𝑛 bits with k information bits. Then the length of the redundant bits 

is 𝑛 − 𝑘. Record the unencoded k-bit data as a polynomial: 

 

𝑚(𝑥) = 𝑚0 + 𝑚1 ∙ 𝑥1 + 𝑚2 ∙ 𝑥2 + ⋯ + 𝑚𝑘−1 ∙ 𝑥𝑘−1                (1) 

 

Where {𝑚0, ⋯ 𝑚𝑘−1} belongs to {0,1}. Then, the generator polynomial can be written as: 

 



Highlights in Science, Engineering and Technology TPCEE 2022 

Volume 38 (2023)  

 

1106 

𝑔(𝑥) = ∏ (𝑥 − 𝛼𝑖) =𝑛−𝑘−1
𝑖=0 (𝑥 − 𝛼0) ⋯ (𝑥 − 𝛼𝑛−𝑘−1)                (2) 

 

To get the check digit polynomial, divide the generator polynomial g(x) by 𝑥𝑟 ∙ 𝑚(𝑥) as: 

 

𝑟(𝑥) = 𝑥𝑟 ∙ 𝑚(𝑥)𝑚𝑜𝑑 𝑔(𝑥)                          (3) 

 

Finally, the encoded BCH codeword polynomial, which is the message to be sent, can be expressed 

as follows: 

 

𝐶(𝑥) = 𝑥𝑟 ∙ 𝑚(𝑥)+𝑥𝑟 ∙ 𝑚(𝑥)𝑚𝑜𝑑 𝑔(𝑥)                     (4) 

 

RS code is similar to BCH code. The code space of the BCH code is on 𝐺𝐹(2). And the check 

space is on 𝐺𝐹(2𝑚). The code space and check space of the RS code are both on GF(2^m). The 

decoding algorithm of RS code and BCH code are the same. 

2.2. The BP decoding algorithm of RS codes and BCH code 

After the BCH codeword is transmitted in the channel. Noise 𝐸(𝑥) will be added to the signal. 

Then the message becomes: 

 

𝑅(𝑥) = 𝐶(𝑥) + 𝐸(𝑥)                             (5) 

 

The traditional decoding method calculates the syndrome from the BCH codewords message R(x). 

The error patterns can be found in the estimated syndrome. The received codeword information is 

subtracted from the error pattern. Then the codeword most similar to the one without noise is obtained. 

However, the traditional decoding method is complex and inefficient. Jing Jiang et al.[11] proposed 

a stochastic shifting-based iterative decoding (SSID) algorithm, which utilized the BP algorithm to 

perform HDPC decoding. Jing Jiang et al. utilized a log-likelihood ratio (LLR) to indicate the 

reliability of the receiving bits. Suppose the coded bit is transmitted with BPSK modulation in the 

channel with additive white Gaussian noise (AWGN). The signal can be expressed as 𝑦 = 𝑥 + 𝑛, 

where y is corresponding to received bits, x is corresponding to the sent bits and n is the Gaussian 

noise. Then the posterior LLR of each received bit can be expressed as: 

 

𝐿(𝑥𝑖) = 𝑙𝑜𝑔
𝑃(𝑐𝑖=0|𝑦)

𝑃(𝑐𝑖=1|𝑦)
                             (6) 

 

To mitigate deterministic errors, Jing Jiang et al. utilized a sum-product algorithm (SPA). Let 𝐿𝑗 

denote the sum of the received bit’s LLR and the extrinsic LLR produced in the jth iteration. 𝐿𝑗 can 

be expressed as: 

 

𝐿𝑗+1 = 𝐿𝑗 + 𝛼𝐿𝑒𝑥𝑡
𝑗                              (7) 

 

Where 𝛼 ∈ (0, 1] is a damping coefficient. Then define 𝐿𝜃 to be the LLR cyclically shifted by 

𝜃, which is an integer belonging to (0, 𝑛 − 1). 𝜓(𝐿𝑗) is defined as the one SPA iteration with input 

LLR 𝐿. Then the stochastic shifting-based iterative decoding (SSID) Proposed by Jing Jiang et al. 

can be described by the following flow chart: 
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Figure 1. Flowchart of SSID algorithm 

SSID algorithm performs BP algorithm to decode RS codes. Halford et al.[12] proposed a random 

redundant iterative decoding algorithm (RRD) for the BCH codes decoding based on the redundant 

Tanner graph. RRD algorithm is an extended version of SSID. RRD algorithm is a soft-input soft-

output (SISO) algorithm. The RRD algorithm is mainly constructed with three loops. An inner loop 

called e loop is to realize BP iterative algorithm. A middle loop named h-loop is to update LLR value 

and bits permutation. An outer loop called q-loop is to update the damping ration 𝛼 for improving 

convergence behaviour [13]. The inner BP iterative e-loop performs BP iteration between variable 

node (VN) and check node (CN). Let 𝑣𝑖 represents the ith variable node and 𝑐𝑗 for the jth check 

node. Let 𝐿𝑣𝑖→𝑐𝑗

𝑞,ℎ,𝑒
 represent the LLR information conveyed from the ith variable node to the jth check 

node (V2C) in the (𝑞, ℎ, 𝑒)  iteration. In the same way 𝐿𝑐𝑗→𝑣𝑖

𝑞,ℎ,0
  represents the LLR information 
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conveyed from the jth check node to the ith variable node (C2V) in the (𝑞, ℎ, 0) iteration. Thus, the 

structure of RRD algorithm can be introduced in figure 2: 

 

Figure 2. Structure of RRD algorithm [13] 

Due to their excellent flexibility and learning ability, neural networks are very suitable for 

decoding error-correcting codes [2]. One of the most significant advantages of neural networks is that 

they can adjust the weights to reduce the impact of channel defects. For example, there may be some 

noise with specific characteristics in the signal’s channel. Neural network decoders can specifically 

lessen the effects of these noises by adjusting the weights. For the BP algorithm, neural networks can 

also be used to reduce the influence of some low-confidence nodes on the decoding process, thereby 

improving the decoding performance. Next, three algorithms that apply the neural network to BCH 

decoding will be introduced to illustrate the role of neural networks in BCH decoding. 

3. Neural Networks Decoder for Channels with Non-white Noise 

Ortuno et al. [2]presented a neural network for decoding BCH (7,4) code over AWGN channel. 

They built two neural networks to decode BCH (7,4) code with different noise conditions. The rest 

of this section will review and discuss their process and discussion. 

3.1. Neural Networks for BCH (7,4) code with white noise 

There exist 4 information bits with BCH (7,4) code. And it will be sent as 7 bits sequence. There 

exist 24 = 16 codewords. Ortuno et al. [2] built a neural network decoder for BCH (7,4) code, which 

is shown in figure 3 
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Figure 3. Neural network decoder for BCH (7,4) code [2] 

In figure 3, the received 7 bits message are put into the corresponding 7 input nodes (𝑐1, 𝑐2 ⋯ 𝑐7). 

These input nodes are connected to the 16(24) intermediate neurons. And the final 4 nodes 𝛼1 to 

𝛼4 denotes the 4 information bits. The first use the neural networks with fixed weight to decode the 

receiving message with white noise, which implies the noisy bits are uncorrelated and their neural 

networks do not have learning capability. They set the solid lines in figure 3 to represent +1 and the 

dashed lines to represent −1 . Their neural networks are equivalent to a maximum likelihood 

decoding (MLD) device in this case. 

3.2. Neural Networks for the BCH (7,4) code with non-white noise 

Then, they change the noise signals to have a non-uniform power spectrum, which implies the 

noisy bits are correlated. At this time, they use a neural learning network to do the decoding, implying 

the neural network has learning capability. Due to the learning capability of neural networks, the 

decoding performance of their model is better than their original neural networks mentioned in section 

3.1. 

3.3. Experiment Result 

Ortuno et al. [2] test the bit error probability of the neural networks with different noise correlation 

coefficients. The result is shown in figure 4. 

 

Figure 4. Bit error probability results for BCH (7,4) with different noise correlation coefficients [2] 
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In figure 4, the solid upper curve denotes the result of applying the original neural network 

mentioned in section 3.1 to decode the non-white noise with different noise correlation coefficients. 

And the lower solid curve refers to the neural net mentioned in section 3.2. Ortuno et al. [2] also 

utilized a standard error back propagation learning algorithm to train the original neural network. The 

result is the dashed curve in figure 4. The result shows that the neural networks can change their 

weights to adjust channels with a different noise due to the learning capability. The decoding 

performance of neural networks will become much better after a time of learning. The learning 

capability of this neural network decoder can be applied to satellite communications to solve non-

white noise interference. This decoder can be used as the first stage of the satellite communication 

decoding system to lessen the effect of non-white noise generated by the other systems in the satellite 

and the shared channel. In the next sections, two neural network decoders will be introduced. The 

second decoding algorithms utilize neural networks to reduce the shortest circles of the Tanner graph 

[14]. The third algorithm utilized neural networks to do the variable node classification to limit the 

transmission of unreliable information. The second and third decoders can be used as the second stage 

of the decoding systems to improve the decoder performance further. 

4. Neural Network Decoder Based on BP Decoding Algorithm for 

Compensating Shortest Circles 

Eliya Nachmani et al. [15] proposed a deep learning method to enhance the performance of the BP 

decoding algorithm for HDPC decoding.  They built their neural networks based on the Tanner 

graph tunable weights on edges. The neural network’s hidden layers correspond to the edges of the 

Tanner graph. Then the weights in the hidden layers are trained by stochastic gradient descent to 

compensate for the shortest circles in the Tanner graph, which adversely affects the decoding 

performance [14]. Sigmoid neurons are used in the last layer to make the final output in the range of 
[0,1]. The architecture of the deep neural network decoder for BCH (15,11) is shown in figure 5. 

 

Figure 5. (a) Architecture of deep neural network decoder for BCH (15,11), (b) Architecture of 

deep neural network decoder for BCH(15,11) with training multiloss[15]. 

4.1. Experiment Result 

The transmitting data is the zero codewords transmitted with an SNR of 1dB to 6dB in the AWGN 

channel. The bit error rate of BP algorithms and the proposed deep neural decoder is compared as a 

function of the signal-to-noise ratio (SNR). The comparison results are shown in Figure 6. 
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Figure 6. (a) BER results for BCH (63,36) code, (b) BER results for BCH (63,45) code, (c) BER 

results for BCH (127,106) code (d) BER results for BCH (63,45) code trained with multiloss[15]. 

In figure 6(a-c), the deep neural decoder has a 0.75 dB improvement compared with the BP 

algorithm in the high SNR region. Figure 6(d) shows that the deep neural decoder with multiloss has 

a 0.9 dB improvement compared with the BP algorithm in the high SNR region. And in figure 6, the 

BER curve of the BP algorithm with 50 iterations is similar to the curve of a deep neural decoder 

without multiloss. And the author mentioned that the curve of the deep neural decoder without 

multiloss in figure 6(d) is the result of the deep neural decoder with 5 iterations. The proposed neural 

decoder can reduce training time tenfold to achieve almost the same performance as the BP algorithm. 

5. Node-Classified Redundant Decoding Neural Network (NC-RDNN) 

Algorithm 

5.1. Principles of NC-RD algorithm 

NC-RDNN classifies variable nodes according to the shortest circle contained in variable nodes to 

limit the spread of unreliable information. This neural network can be applied before the neural 

network decoder mentioned in Section 5 to classify the reliability of variable nodes, thereby further 

improving performance. NC-RDNN applies deep learning on top of the node-classified redundant 

decoding (NC-RD) algorithm. Therefore, it is necessary to introduce the NC-RD algorithm first. 

The RRD algorithm mentioned in section 1.3 successfully performs the BP decoding algorithm on 

BCH decoding. On top of the RRD algorithm, Bryan Liu et al. proposed the NC-RD algorithm [13]. 

In the RRD algorithm, the bits positions are randomly permutated to reduce the growing correlations 

between the decoding messages. NC-RD algorithm performs bit permutation according to an ordered 
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permutation list. Before doing the RRD algorithm, the variable nodes will be classified by K-means 

to get an ordered list of permutations through the centroid in the variable node cluster. Then the 

obtained list is used in the RRD algorithm to limit the transmission of unreliable information in 

decoding iterations. The process of the NC-RD algorithm could be summarized as follows: 

 

Figure 7. NC-RD algorithm 

Based on NC-RD algorithm, Bryan Liu et al. [13] proposed mNC-RD algorithm. In mNC-RD 

algorithm, generated permutation list is generated multiple times and permutate bits according to the 

permutation lists in different orders. mNC-RD algorithm performs better, since the bits converge to 

the true codewords faster. 

5.2. NC-RDNN algorithm 

Based on NC-RD algorithm, Bryan Liu et al. [13] proposed the NC-RDNN algorithm, which 

constructs the neural network decoder based on the Tanner graph. Part of the neural network layers 

is shown in figure 6. 

 

Figure 8. Two layers of NC-RDNN [13] 

In figure 6, same as in the RRD algorithm, 𝐿𝑐→𝑣𝑖
 and 𝐿𝑣𝑖→𝑐  represent the LLR information 

transform between check nodes and variable nodes. After introducing the weight variable, 𝐿𝑣𝑖→𝑐 can 

be represented as 𝐿𝑣𝑖→𝑐 = 𝑤𝑐→𝑣𝑖
𝐿𝑐→𝑣𝑖

, where 𝑤𝑐→𝑣𝑖
∈ 𝐹2

(|𝑁(𝑣𝑖)|×|𝑁(𝑣𝑖)|)
 and 𝐹2 ∈ {0,1}. 𝑤𝑐→𝑣𝑖

= 0 

means the neurons do not have connections. The structure of NC-RDNN for BCH (7,4) is shown in 

figure 7. 
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Figure 9. Structure of NC-RDNN for BCH (7,4) [13] 

5.3. Performance of NC-RDNN algorithm 

Bryan Liu et al. compared the bit error rate of different decoding algorithms as a function of SNR. 

The signal in the experiment is transmitted in the AWGN channel. The result of the comparison is 

shown in figure 8: 

 

Figure 10. (a) Bit error rate of BCH (31,21). (b) Bit error rate of BCH (63,36) [13]. 

Figure 8(a) shows that the performance of NC-RD algorithm has 0.2dB gain over that of RRD, 

and the decoding performance of NC-RDNN has 0.18dB gain compared with NC-RD for decoding 

BCH (31,21). Figure 8(b) demonstrates that NC-RD is 0.5 dB better than RRD for decoding BCH 
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(63,36), and NC-RDNN has a further 0.2 dB gain than NC-RD. As can be seen from the figure 8, as 

the SNR increases, the performance difference between the decoders also increases. 

6.  Decoder System for Satellite Communication 

The satellite-ground integrated system can improve spectrum utilization efficiency and optimize 

the scarce low-frequency spectrum resources [3]. The disadvantage is that the ground and satellite 

networks use the same frequency band, which will inevitably cause interference. The primary 

interference scope in the satellite-ground integrated system is shown in figure 9. 

 

Figure 11. The main interference scope in the system[3] 

Due to the high level of integration within the satellite, noise effects exist between different 

systems. The neural network decoder mentioned in section three is suitable for reducing this 

interference. After training the neural network decoder to compensate for the non-white noise, the 

neural network BP decoder is used to decode the messages. And NC-RDNN is used to classify the 

variable nodes to improve decoding performance further. The decoding system is shown in figure 10. 

 

Figure 12. decoder system for satellite communication 

7. Conclusion 

This paper introduces three neural network decoders for different problems. Then these three kinds 

of neural networks are combined to propose a neural network decoding system. The algorithm in 

section 4 employs neural networks to lessen the influence of non-white noise in the system. The 

algorithm in section 5 uses the neural network to adjust for the shortest cycles in the Tanner graph. 

The NC-RDNN algorithm mentioned in section 6 establishes the variable nodes classification method 

and uses neural networks to enhance performance further. As the BCH code length increases, the 

complexity of sample training and quantization accuracy increases dramatically, which is not 

conducive to the performance improvement of neural networks. Therefore, classifying BCH codes 

with different code lengths and selectively using neural network decoders to decode BCH codes with 

a specific code length range is also a direction worthy of further study. 

This system improves the encoder’s performance by reducing the impact of non-white noise, 

reducing the shortest circles in the Tanner graph, and classifying variable nodes. The system consists 
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entirely of neural networks, and the training of the weights can be done on the ground and then 

uploaded to the satellite decoding system to prevent unnecessary energy waste. Since the system is 

wholly based on the neural network and can compensate for noise by adjusting the weights, the system 

is very suitable for satellite systems in complex space environments where various noises exist and 

need energy saving. 

In the high SNR value range, the improvement of using the neural network is larger. Many 

researchers have proposed optimized decoding methods for RS codes [12,16–18]. Since RS codes 

have many similarities with BCH codes, the optimized decoding algorithms of RS codes may be 

implemented into BCH codes in the future. 
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