Research on the Application of Low Carbon and Energy Saving in Green Buildings

Yahui Dai

SPIC Science and Technology Research Institute Co., LTD Beijing, 102209, China

Abstract: This article discusses the principles and recommendations for green and energy-efficient architectural design. Firstly, it is suggested to optimize architectural design and orientation to fully utilize natural resources and lighting. Secondly, using environmentally friendly and energy-efficient materials can effectively reduce energy consumption. Thirdly, by incorporating smart controls and renewable energy applications, the energy efficiency of buildings can be further improved. Additionally, strengthening organizational leadership and establishing sound mechanisms for energy-saving in construction projects, as well as enhancing energy-saving supervision throughout the entire construction process, are also necessary. Lastly, the application of low-carbon energy-saving technologies in the architectural design phase is explored. By implementing the above principles and recommendations, the development of green and energy-efficient buildings can be promoted, contributing to sustainable development.

Keywords: Low carbon energy saving. Green Building. Applications.

1. Introduction

As global concerns for environmental protection and sustainable development continue to increase, green and energy-efficient buildings have become an important trend in the construction industry. Green and energy-efficient buildings aim to reduce energy consumption and carbon emissions through optimizing designs, using environmentally friendly materials, applying smart controls, and utilizing renewable energy sources, making them more environmentally friendly and sustainable. This article will discuss the principles and recommendations for green and energy-efficient architectural design, as well as the application of low-carbon energy-saving technologies in the architectural design phase, with the hope of providing the construction industry with more sustainable and energy-efficient solutions. The development of green and energy-efficient buildings not only helps protect the environment and mitigate climate change but also brings new business opportunities and economic benefits to the construction industry. Therefore, green and energy-efficient buildings have become an important consideration in architectural design, requiring collective efforts from the entire industry to promote their development.

2. Green Energy Saving Building Design Architectural Principles

The principles of green and energy-efficient building design are based on the concepts of environmental protection and sustainable development. The aim is to minimize the energy consumption of buildings, reduce reliance on natural resources, and decrease carbon footprint and environmental pollution. In the design process, the following principles need to be considered: Firstly, optimize building design and orientation. By employing a well-thought-out building layout and orientation, natural light and heat can be maximized, reducing the need for artificial lighting and heating systems, thus lowering energy consumption. For example, windows, skylights, and shading devices should be designed strategically to maximize natural lighting and ventilation. Secondly, use environmentally friendly and energy-efficient materials. Select materials that meet environmental requirements such as low-energy building materials, recyclable materials, and eco-friendly coatings, to reduce resource consumption and minimize pollutants emitted during the building's lifecycle [1]. Additionally, these materials should possess good insulation properties to reduce energy dependence. Thirdly, integrate smart controls and renewable energy. Application of smart control systems, such as automated regulation of indoor temperature and lighting, can maximize energy utilization efficiency. Simultaneously, incorporating renewable energy sources such as solar power and wind energy as auxiliary sources reduces dependence on conventional energy and controls carbon emissions. Furthermore, strengthening organizational leadership and establishing a sound mechanism for building energy conservation is an important principle. Dedicated teams or institutions should be established to plan, manage, and supervise green and energy-efficient building-related affairs. Training and educational initiatives should raise awareness and improve the competence of professionals in understanding and applying green and energy-efficient building concepts and technologies. Lastly, it is essential to enhance supervision of energy conservation throughout the entire construction process. The development of relevant laws and regulations, along with strengthened monitoring and evaluation of energy conservation in building construction, ensures effective implementation of energy-saving requirements in building design and construction. These principles play a significant guiding role in green and energy-efficient building design. By applying them sensibly, it is possible to achieve reduced energy consumption and environmental impact, thereby promoting the construction industry towards a more sustainable and environmentally friendly direction.

3.1. Optimizing building design and orientation

One of the recommendations for green and energy-efficient buildings is to optimize the architectural design and orientation. During the design process, it is important to consider the climate conditions and environmental characteristics of the building's location, as well as its functional requirements, in order to plan the layout and orientation effectively. Here are some specific suggestions: Firstly, make full use of natural lighting. Design large windows and skylights to allow more natural light to illuminate indoor spaces. Carefully select the position and size of windows to achieve optimal daylighting effects. Additionally, incorporate shading devices to control sunlight entry based on seasonal and solar angle variations, thus avoiding excessive glare and overheating. Secondly, make efficient use of natural ventilation. By designing operable windows and ventilation openings, promote air circulation within the building and reduce reliance on air conditioning systems. Consider the airflow patterns and prevailing wind directions to strategically position and size ventilation openings, aiming to improve indoor air quality. Besides, optimizing the building layout is crucial. Combine spaces with similar functions to reduce excessive partition walls and windows, minimizing thermal bridging and energy loss. Rationalize the building orientation and massing ratio to maximize the utilization of solar and natural energy, thereby reducing the dependence on artificial energy sources. Throughout the process of optimizing architectural design and orientation, architects and design teams should consider various factors, including climate conditions, solar angles, wind directions, and functional requirements. By effectively utilizing natural resources, it is possible to minimize energy consumption and achieve the goals of creating green, environmentally friendly, and energy-efficient buildings. Additionally, appropriate architectural design and orientation can contribute to improved comfort and healthier environments for occupants. Optimizing architectural design and orientation is an important step towards the sustainable and environmentally friendly development of the construction industry [2].

3.2. Using Environmentally Friendly and Energy-efficient Materials

In modern architectural design, the selection and use of materials are crucial for achieving energy efficiency and environmental goals. Here are some specific recommendations: Firstly, choose sustainable and eco-friendly building materials. Prioritize materials that are recyclable and reusable, such as reclaimed wood, recyclable metals, and glass. Avoid materials that have negative environmental impacts, such as hazardous chemicals and high-energy-consuming materials. At the same time, adopt materials with longer lifespans to reduce the frequency of material replacement and resource consumption. Secondly, focus on the energy-saving performance of materials. Choose materials that have good insulation properties, such as high-efficiency insulation materials, double or triple glazing, etc. These materials can reduce energy loss in buildings, lower heating and cooling energy consumption, and improve the energy utilization efficiency of the building. In addition, selecting materials with low carbon emissions is also an important step. Consider the production process and carbon footprint of materials, and choose materials with lower energy consumption and less carbon emissions. For example, choose materials made from renewable energy sources, such as glass and metal manufactured using solar or wind energy. Additionally, reducing transportation distance can also lower carbon emissions and environmental impact. Lastly, strengthen the use and maintenance management of building materials. Proper use and maintenance of building materials can extend their lifespan, reduce resource consumption, and minimize waste generation. Through regular inspections and repairs, damaged materials can be fixed and early replacements can be avoided, further reducing resource waste. In conclusion, using environmentally friendly and energy-efficient materials is one of the important measures to achieve green and energy-efficient buildings. Architects and design teams should prioritize sustainability, energy efficiency, and low carbon emissions principles in the process of material selection and use, in order to minimize the consumption of natural resources and negative impacts on the environment. Through responsible material selection and use, the construction industry can move towards a more sustainable and environmentally friendly direction [3].

3.3. Combining intelligent control and renewable energy

Combining intelligent control systems and renewable energy can effectively improve the energy utilization efficiency of buildings, reduce reliance on traditional energy sources, and achieve more environmentally friendly and sustainable building designs. Here are some specific suggestions: Firstly, apply intelligent control systems to manage the energy usage of buildings. By using sensors, automated control devices, and smart monitoring systems, it is possible to monitor and adjust indoor temperature, humidity, lighting, and other parameters in real-time. This allows for dynamic adjustment of energy usage based on actual needs, avoiding unnecessary waste. Secondly, integrate renewable energy sources to supply the energy requirements of buildings. Renewable energy sources such as solar power, wind energy, etc., offer an infinite supply of clean and sustainable energy. In building design, consider installing solar photovoltaic panels, wind turbines, etc., to convert renewable energy into electricity for powering the building's electrical needs. Additionally, technologies such as geothermal or ground-source heat pumps can utilize underground energy for heating or cooling purposes. Furthermore, intelligent energy management systems can be combined with renewable energy devices to achieve more efficient energy utilization. For example, by monitoring the output of solar photovoltaic panels through an intelligent control system, electricity distribution can be intelligently adjusted based on real-time demand, storing excess power for future use. Smart battery energy storage systems can also store surplus renewable energy to supply the building when needed. This integrated approach maximizes the utilization of renewable energy and reduces reliance on traditional energy sources. In conclusion, combining intelligent control and renewable energy is one of the important strategies in achieving green and energy-efficient buildings. By precisely regulating through intelligent control systems and effectively utilizing renewable energy, the energy utilization efficiency can be maximized, reducing
building energy consumption and carbon emissions, thereby further promoting the development of the construction industry towards a more environmentally friendly and sustainable direction.

3.4. Strengthening organizational leadership and improve the mechanism for building energy conservation

Building energy conservation requires the collective participation and efforts of the entire society. It requires clear organizational leadership and a sound work mechanism to promote and supervise implementation. Here are some specific suggestions: Firstly, establish a specialized institution or department responsible for building energy conservation affairs. This institution should have relevant professional knowledge and skills to formulate and promote policies, standards, and regulations on building energy conservation, as well as coordinate cooperation among all parties. At the same time, this institution needs to work closely with other relevant departments and stakeholders to form a collaborative mechanism and jointly promote building energy conservation work. Secondly, develop long-term planning and goals for building energy conservation. By setting clear targets and indicators for building energy conservation, it provides clear direction and guidance for all parties and promotes continuous improvement in building energy conservation. These goals should be measurable, verifiable, and consistent with national or regional energy policies and environmental targets. In addition, establish and improve the building energy conservation assessment and certification system. By establishing unified assessment and certification standards, the energy performance of buildings can be evaluated and certified, providing information and guidance on building energy conservation for building authorities, designers, developers, and users [4]. This can motivate all parties to pay more attention to energy conservation and environmental requirements in the process of building design, construction, and use. Furthermore, strengthen the promotion and training of building energy conservation technologies. By organizing training courses, seminars, and knowledge-sharing activities, the latest energy-saving technologies and best practices can be disseminated to relevant personnel in the construction industry, raising their awareness and capabilities and promoting the widespread application of energy-saving technologies. Lastly, establish effective monitoring and enforcement mechanisms. Strengthen supervision and enforcement of building energy conservation policies and standards, ensuring that building projects are designed, constructed, and used in accordance with the specified energy-saving requirements. Corresponding penalties should be imposed for buildings that do not meet the energy-saving requirements to ensure effective implementation of energy-saving policies. In conclusion, strengthening organizational leadership and improving the mechanism for building energy conservation are important measures to promote the development of green and energy-efficient buildings. By establishing specialized institutions, setting goals, conducting assessments and certifications, promoting technologies, and enforcing supervision, a comprehensive and systematic work mechanism for building energy conservation can be formed, promoting the widespread application and sustainable development of green and energy-efficient buildings.

3.5. Strengthening the supervision of building energy efficiency in the whole process of construction of building projects

Enhancing the supervision of energy-saving in the entire process of construction engineering is an important measure to promote the development of green buildings and reduce energy consumption. In various stages of construction engineering, including planning, design, construction, and acceptance, regulatory authorities need to actively participate and promote compliance with energy-saving standards. Firstly, during the planning and design phase, regulatory authorities should strengthen the review and guidance of energy-saving technologies and measures. Construction projects should comply with national and local energy-saving standards and regulations, adopting reasonable orientation, layout, and materials to ensure the insulation, thermal insulation, and ventilation performance of buildings meet requirements. Regulatory authorities can review the construction design documents and provide necessary modifications and suggestions to ensure that buildings achieve the expected energy-saving goals. Secondly, during the construction phase, regulatory authorities need to strengthen the acceptance and supervision of energy-saving materials and equipment. Inspectors can test and sample the quality of construction materials and equipment to ensure compliance with relevant energy-saving standards and technical requirements. Simultaneously, regulatory authorities should conduct inspections and supervision at construction sites to ensure that construction projects are carried out in accordance with design requirements, without any loss or violation of energy-saving technologies and measures. Finally, during the completion and acceptance phase, regulatory authorities should enhance the evaluation and testing of energy-saving performance. By conducting tests and monitoring energy consumption, thermal performance, and indoor environmental quality, regulators can determine whether the buildings meet the expected energy-saving effects. If problems or non-compliance exist, regulatory authorities should require rectification or redesign to ensure that the energy-saving performance of buildings meets standards. By strengthening supervision throughout the entire construction process, the construction industry can be driven towards a greener and more sustainable direction. Additionally, the participation and supervision of regulatory authorities can help reduce energy consumption and carbon emissions from the source, contributing to energy conservation and environmental protection. This not only helps address challenges such as climate change and energy scarcity but also enhances the quality of buildings, providing more comfortable and healthy living and working environments [5].


When applying low-carbon energy-saving technology in the design stage of buildings, architects and design teams should take the following measures to reduce the energy consumption and carbon emissions of the buildings:

(1) Building facade design: Architects can choose efficient insulation materials and designs to reduce the energy exchange between the interior and exterior of the building.
For example, efficient insulation materials such as rock wool and polystyrene can be used to improve the thermal insulation performance of the building.

(2) Optimizing building orientation and layout: Architects can design the building’s orientation and spatial layout in a way that maximizes the use of natural light and natural ventilation. By properly positioning and sizing windows and utilizing shading and ventilation facilities, the demand for artificial lighting and air conditioning systems can be reduced.

(3) Using efficient equipment and systems: Design teams can choose to use energy-efficient equipment and systems, such as LED lighting, smart control systems, and efficient heating, ventilation, and air conditioning (HVAC) systems. These equipment and systems can reduce energy consumption and improve energy utilization efficiency.

(4) Utilizing renewable energy: Design teams can consider the use of renewable energy sources, such as solar photovoltaic systems and solar water heaters, in building design. By converting solar energy into electricity and heat, reliance on traditional energy sources can be reduced, and carbon emissions can be lowered.

(5) Implementing water-saving measures: Design teams can choose to use water-saving devices and technologies, such as low-flow faucets and rainwater harvesting systems. These measures help reduce water consumption and improve water resource utilization efficiency.

By implementing these measures, architects and design teams can reduce the energy consumption and carbon emissions of buildings. These initiatives not only contribute to environmental protection and greenhouse gas reduction but also contribute to the sustainable development of buildings. Additionally, adopting low-carbon energy-saving technologies can lower energy costs and provide a more comfortable and healthy indoor environment.

5. Conclusion

The research on the application of low-carbon energy in green buildings is an important issue that cannot be ignored in the construction industry today. With the increasing global focus on environmental protection and sustainable development, the construction industry urgently needs to take action to reduce carbon emissions and energy consumption. Through the research and application of low-carbon energy-saving technologies, we can achieve the goal of green buildings, harmonizing the built environment with the natural environment, and providing people with more comfortable, healthy, and sustainable living and working environments. In the process of researching low-carbon energy-saving technologies, we need to focus on every aspect of the entire building lifecycle. From planning and design to material selection, construction, and operation management, each step needs to consider how to minimize energy consumption and reduce carbon emissions. At the same time, we also need to focus on technological innovation and continuous improvement, constantly seeking more efficient and sustainable solutions. The research and application of low-carbon energy not only contribute to environmental protection and carbon reduction but also bring economic and social benefits. The transformation and upgrading of the construction industry will drive the development of related industries, create employment opportunities, and reduce energy costs. At the same time, low-carbon energy buildings can also enhance people's quality of life, creating healthy, comfortable, and livable living environments. To promote the application of low-carbon energy in green buildings, we need the participation of governments, industry organizations, research institutions, and businesses. Through strengthened cooperation and communication, sharing experiences and best practices, we can promote the development of green buildings and make positive contributions to sustainable cities and societies in the future. Only by adhering to a green and low-carbon development path can we achieve a sustainable future.

References


