Research on the Employment Effect and Influence Mechanism of Artificial Intelligence

Shaoyun Lin¹,²

¹Ulaanbaatar Erdem University in Mongolia, Ulaanbaatar 11000, Mongolia
²Guangzhou Nanyang Polytechnic College, Guangzhou 510925, China.

Abstract: With the rapid development of the new generation of information technology, artificial intelligence has had a profound impact on the labor and employment market, which has attracted the attention to its structural change. With the background of artificial intelligence, combined with the characteristics of the four technological changes of artificial intelligence, this paper deeply analyzes the influence mechanism of artificial intelligence on employment. Through the 2017-2021 Chinese provinces panel data empirical analysis, the study found: artificial intelligence significantly improved the employment of agriculture and services, but the local manufacturing employment inhibition effect, with the deepening application of artificial intelligence, intelligent manufacturing will create more man-machine collaborative jobs, create effect will take advantage. Accordingly put forward, should correctly understand the substitution effect of artificial intelligence, seize the talent training and talent competition at the same time, seize the talent training and talent competition at the same time. China's rapid application and development of AI technologies has also broadened its industrial boundaries, broadened the application of AI in manufacturing and services, and has effectively transformed and upgraded China's employment and realizing high-quality and high-level employment.

Keywords: Artificial intelligence; employment; alternative effect; creative effect.

1. Introduction

On March 11, 2021, the 13th session of the National People's Congress held the fourth conference voted by the fourteenth of the People's Republic of China for national economic and social development and 2035 vision outline (hereinafter referred to as "difference" planning), file stressed: promote digital technology and the real economy depth fusion, can to transformation and upgrading of traditional industries, new model create new industry new forms Type [1]. At present, with a new round of technological change, the number of AI technology applications in China is showing an explosive growth trend. According to the 2022 China AI Industry Research Report, the scale of China's AI core AI industry is expected to reach 17.4 billion US dollars by 2022, accounting for 33.3% of the world, and the product forms and application boundaries of AI have been continuously broadened. Besides, the number of AI applications is also increasing. McKinsey's survey on enterprise AI applications in 2022 found that compared with a 20% increase in 2017, the rate of enterprises using AI technology in at least one business area increased more than doubled to 50%. However, the rapid development and large-scale application of artificial intelligence technology, while promoting the transformation and upgrading of industrial structure and promoting high-quality economic development, is bound to have a major impact on the labor market. At the same time, it has also triggered concerns in the job market about the "machine replacement". Therefore, the study of the employment effect and influence mechanism of artificial intelligence on China's employment can provide decision-making basis and reference for governments at all levels in formulating employment security policies and training and reemployment system, which is of great practical significance for promoting the transformation and structural optimization of China's employment and realizing high-quality and high-level employment.

2. Review of the Relevant Literature

2.1. The impact of AI on total employment

Scholars on the influence of artificial intelligence on employment present three different views: the first view: artificial intelligence application impact on the total labor employment negative view, Susskind[4], Cao Jing and Zhou [5] think that with the development and application of artificial intelligence technology and [5], robots can replace labor in a wider range of tasks, automation covers most of the range of work tasks, lead to mass unemployment. Frey and Osborne[6] used a position-based approach, according to the US O * NET career system, to summarize nine skill characteristic variables that are difficult to replace by AI. They assessed substitution risk across occupations and found that 47% of occupations in the United States had a high probability of substitution. Gong Yao and Peng Xizhe [7] found that 59.5 to 76 percent of jobs in China will face high automation risk. Wang Yongqin and Dong Wen [8] Based on the data of China's Shanghai and Shenzhen A-share manufacturing listed enterprises from 2011 to 2015, the study found that the application of industrial robots in China will also lead to significant decreases in the labor demand of enterprises. Every 1% increase in the application of industrial robots will lead to a significant decrease in the labor demand of 0.18%. The second view is that some scholars pay attention to the creative effect of artificial intelligence on employment. The classical economist Say (1997) pointed out that technological advances do not lead to long-term unemployment. Because the replacement of labor by machines increases labor productivity, which increases production. Trajtenberg[9] That AI will create more jobs by increasing productivity and creating new industries and new jobs. Lu Rongjie et al. found through empirical analysis that the development of AI will promote the growth of urban employment in China, but it will reduce the number of rural
employment. On the whole, the development of AI will increase the total number of urban and rural employment. AI will also raise the wages of employed workers, and the incomes of both urban and rural workers. Through research, He Qin and Qiu Yue found that among listed enterprises, increasing the investment in research and development of artificial intelligence technology will increase the employment demand of enterprises, provide more employment opportunities, and improve the income level of employees, so as to improve the employment quality of employees and attract more highly skilled talents. The third view is that the application of AI has no significant impact on total employment. Acemoglu et al. [10] believes that due to the negative substitution effect and positive creation effect of artificial intelligence on labor employment demand, the total employment of labor force may not change significantly in the process of promoting the application of AI. Kromann et al. [11], based on the manufacturing segmentation data of 17 countries from 1993 to 2007 and 9 countries from 2004 to 2007, all studies showed that the application of industrial robots did not have a significant impact on the overall employment of the industry labor force. Wang Wen [12] and Zhao Chunming [13], based on the panel data from 2009-2017 and the 2012-2016, respectively, also found that the application of industrial robots had no significant impact on the total labor employment at the provincial level and the individual level.

2.2. The impact of artificial intelligence on employment structure

Compared with the controversy of the impact of employment, the impact of academic circles on employment structure on employment structure is more consistent. Cai Yuezhou and Chen Nan recognized [14] the impact of artificial intelligence on labor employment structure is far greater than the impact on the total amount of employment. Hemous [15] builds an automated growth model. Studies have found that the application of intelligent technology will increase the employment needs of high skills, but it will suppress employment needs for low skills. ACEMOGLU found that the employment model found that it created new positions and eliminated some positions. Zhang Yuzhen studied the impact of artificial intelligence on the structure of the post. He believes that the influence of artificial intelligence on different industries is different, which will cause industry differentiation. Du Chuanwen et al. [16] analyzed the influence of artificial intelligence on employment skills structure and industrial structure, and pointed out that artificial intelligence is leading the fourth industrial revolution. This industrial revolution, like the previous technological revolution, will replace low-skilled labor, but this The secondary industrial revolution will also produce new industries and new occupations. These new industries and occupations have higher requirements for technology, so they will increase employment needs for high-skilled labor. Emerging industries use artificial intelligence technology, thereby increasing labor productivity. A large amount of labor will transfer new industries with higher productivity, thereby changing the industrial structure of employment. In addition, some scholars believe that the core impact of artificial intelligence is mainly manifested in quality indicators such as salary, employment competitiveness, working environment, balance of family and career life, and labor security.

In summary, the previous research on the impact of artificial intelligence on employment was quite rich. However, from the characteristics of artificial intelligence development, it systematically discussed its research on the employment impact mechanism. In view of this, this article combines the development stage and technical characteristics of artificial intelligence to empirical analysis of its impact on the total employment of first, second, and third industries. Essence

3. The Theoretical Mechanism of Artificial Intelligence on Employment Impact

Artificial intelligence, as a communication technology, originated from the development and change of computer technology. The development of artificial intelligence has gone through four technical changes. Each technical change will affect the number of employment, employment structure and employment quality of labor force. This part first analyzes the relationship between artificial intelligence and employment from theoretical level. Focus on the influence of artificial intelligence applications on employment of labor. In addition, based on the simplified models of ACEMOGLU and RESTREPO [17], the impact of robotics on employment from an industrial perspective on employment.

3.1. The impact of the previous technological revolution on employment

As a key driving force for productivity improvement and economic growth, technological innovation has a profound impact on the employment market. In the 18th century, four industrial revolutions were born, and the first industrial revolution brought steam engines [18]. The emergence of new machines has increased labor productivity. A large number of handicraft workers have unemployed due to the replacement of the machine. The original heavy repetitive physical labor has gradually transformed into a convenient non-heavy physical labor; the second industrial revolution is mainly based on Power technology is the main. At first, the workers who knew the power technology were extremely scarce, and the heterogeneity of labor was very prominent. The demand for brain workers gradually increased. The vigorous development of the industry. The machine began to engage in the simple work of mechanization and proceduralization, which prompted the labor structure to change; the fourth industrial revolution is an intelligent era represented by robot technology. Artificial intelligence technology is applied to all aspects of production and life. Brain labor and intellectual labor may face the possibility of being replaced.

3.2. The mechanism of artificial intelligence in employment

On the basis of ACEMOGLU and RESTREPO [17], on the basis of the impact of robot applications on employment channels, the use of robots may have an impact on enterprise employment through the following channels: first, alternative effect pathway. Similar to the early industrial revolution, robotics applications will replace some conventional handicrafts, thereby reducing the labor needs of production links. Second, the scale effect. Increasing enterprise competitiveness and decline in product prices will lead to increased demand, which will increase the scale of output, and enterprises will increase labor input in various links accordingly. Third, the way of productivity effect. This
includes the improvement of production efficiency brought by robotics, as well as the improvement of productivity improvement brought about by long-term capital accumulation and automation (such as some mechanical equipment performance improvement). This effect will directly improve the labor employment in non-automated links [19]. However, when the size of the enterprise has not been increased, the increase in productivity may also lead to a decrease in labor demand.

Based on the task model built by ACEMOGLU and RESTREP [17], consider the impact of robotic applications on labor demand on labor, and analyze the impact of robotic applications on the total number of labor employment by building a labor demand model. In terms of labor demand, it is assumed that there is only a complete competitive department in the economic environment, and only one final product Y. The final product is produced by a series of continuous tasks X. The production function is set as follows:

$$\ln Y = \int_{T}^{L} \ln y(x) \, dx$$ (1)

Where $y(x)$ represents the intermediate output of the task x. It is assumed that task $x = [S, T]$ can be completed by robots and labor, while task $x = [T, Z]$ can only be produced by labor due to technical constraints, so the production function of x intermediate output is:

$$y(x) = \begin{cases} Y_L(x)l(x) + Y_M(x)k(x) & \text{if } x \in [S, T] \\ Y_L(x)l(x) & \text{if } x \in [T, Z] \end{cases}$$ (2)

among, $Y_L(x)$ is the labor productivity on the task X. $Y_M(x)$ is the productivity of the task X on the machine. The company will choose the minimum factor combination method for production, thereby further assumption:

$$\frac{Y_L(Z)}{Y_M(S)} \cdot \frac{W}{R} \cdot \frac{Y_L(T)}{Y_M(T)}$$ (3)

Among them, W is the balanced salary, and R is the rent of the enterprise leasing machine. When in equilibrium, task $x = [S, T]$ is completely produced by machine, and task $x = [T, Z]$ is completely produced by labor, and then the formula of labor demand in equilibrium is as follows:

$$L_d = (Z-T) \frac{Y}{W}$$ (4)

According to Formulation 4, we can know that the introduction of robots in the production process may affect the labor needs through the following three channels: first, the alternative effect pathway. Under the circumstances that other conditions remain unchanged, the introduction of robots in enterprises will directly replace the conventional handicrafts that are easy to automate. In the upper formula, this manifests that with the expansion of enterprise automation range T, labor demand will decrease. Second, the scale effect. The reduction of product prices will increase the demand for stimulation, which ultimately leads to the expansion of the output scale. In this case, enterprises will increase the investment in labor elements in all aspects, which reflects the increase in Y in the upper formula. Third, the way of productivity effect. On the one hand, the use of robots can automate the production method of the enterprise, improve production efficiency and competitiveness, thereby increasing labor demand [17]. On the other hand, in the case of unchanged scale, the improvement of production efficiency may also have the effect of saving labor.

4. Industrial Development: The Current Status of The Development of China's Artificial Intelligence Industry

The development of China's artificial intelligence industry has always been on the orbit. China is the largest market for robots and automated products. In the first six months of 2023, China's industrial robot sales increased by 17.1% year-on-year. China has a powerful robotic component supply chain. The Chinese government has also established funds and policies that support the development of the robot industry. In 2022, my country successively introduced a series of guidance and notifications to continuously strengthen the overall guidance of the innovation of artificial intelligence scenes, standardize and strengthen the construction of artificial intelligence applications, realize AI and AI with Deep integration of the physical industry economy [3].

The Chinese artificial intelligence market has maintained a highly active, powerful talent pool and leading research and development capabilities in recent years to lay the foundation for the development of artificial intelligence. The large economic scale and huge demand potential have enriched the application scenarios of artificial intelligence. The Chinese artificial intelligence market is in the Chinese artificial intelligence market. Dedicated by all parties, a blowout growth has appeared. According to the "China Robot Industry Development Report (2022)" (hereinafter referred to as "Report"), it is estimated that the Chinese robot market size will reach US $17.4 billion in 2022, and the global robot scale is 51.3 billion The US dollar, accounting for 33.9%, continues to maintain its market position in the world's largest robotic market. The average annual growth rate of Chinese robots from 2017 to 2022 was 22%, while the global average annual growth rate of 14% in the same period was 7% higher [3]. Among them, the size of the industrial robot and service robot market will reach $8.7 billion, each accounting for 50%, and the average annual growth rate of 2017-2022 is 13.6% and 37%, respectively. In the service robot market, the market size of public service robots and individuals/home service robots is US $6.5 billion, accounting for 37.4% of the total market size; special service robots are US $2.2 billion, accounting for 12.6% of the total market size. In 2024, the size of the Chinese robot market is expected to reach $25.1 billion, accounting for 38.0% of the world's, and the market size of industrial robots and service robots has climbed to US $11.5 billion and US $13.6 billion, respectively. See Figure 1. Figure 1 and 2.
5. Empirical Analysis of The Impact of Artificial Intelligence on Labor Force Employment

5.1. Model setting

In order to explore the impact of AI on the total number of employment and the number of primary, secondary and tertiary industries, we constructed the following evaluation model:

(1) \(y_{0it} = a_0 + \beta_0 x_{it} + \gamma_0 Z_{it} + \delta_i + \lambda_t + \epsilon_{it} \)

(2) \(y_{1it} = a_1 + \beta_1 x_{it} + \gamma_1 Z_{it} + \delta_i + \lambda_t + \epsilon_{it} \)

(3) \(y_{2it} = a_2 + \beta_2 x_{it} + \gamma_2 Z_{it} + \delta_i + \lambda_t + \epsilon_{it} \)

(4) \(y_{3it} = a_3 + \beta_3 x_{it} + \gamma_3 Z_{it} + \delta_i + \lambda_t + \epsilon_{it} \)

Among, \(Y_{0it} \) represents the total number of employment in the three major industries in each province, \(Y_{1it} \) represents the number of provincial agricultural employment, \(Y_{2it} \) represents provincial manufacturing employment, \(Y_{3it} \) represents the number of provincial service sector employment. Besides, \(X_{it} \) represents the level of AI development, \(Z_{it} \) represents other control variables for the provinces, \(\delta_i \) on behalf of the provinces, \(\lambda_t \) on behalf of the year, \(\epsilon_{it} \) to present a fixed effect, \(\lambda_t \) represents the time effect, \(\epsilon_{it} \) for the random perturbation term.

5.2. Data source and variables selection

The analysis data used in this article comes from the "China..."
Employment of artificial intelligence to China's labor market reduces labor demand in general, that is, in the short term, the artificial intelligence technology at this stage generally has a significant horizontal test of the P value of less than 0.05, which means that the application of artificial intelligence has a significant impact on employment. First of all, the combination of the regression equation is inspected. The values of the R² are 0.977, 0.983, and 0.879. The fitting advantages are higher. Secondly, the proportion of employment in each province and towns to the total number of employees in each service business is examined. Core explanation variables, the market size of artificial intelligence robots in actual production and services can better reflect the application of artificial intelligence. Therefore, this study selected the robot market size (100 million yuan) as agent variables of artificial intelligence development in various places [28].

Control variables, refer to the research methods of Wang Wen [21], select the level of economic development, informatization, industrial structure, level of foreign use, and the degree of trade openness as a control variable that affects employment.

5.3. Description statistics

The descriptive statistical results of all variables are shown in Table 2: Four due to variable indicators are total employment level, agricultural employment level, manufacturing employment level, and service employment level. Intelligence has a greater impact on the number of employment in agriculture and service industry, and has the least impact on the number of employment in the manufacturing industry. At this stage, artificial intelligence is not obvious on the overall employment situation of my country, but the reason for this may be that it has not controlled other other controls other. During variables, the two show positive correlations and need to be further analyzed and verified in subsequent regression.

Table 2. Descriptive statistics of variables

<table>
<thead>
<tr>
<th>variable</th>
<th>Variable interpretation</th>
<th>N</th>
<th>minimum</th>
<th>maximum</th>
<th>mean value</th>
<th>standard deviations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total employment level</td>
<td>The proportion of urban unit employment in the urban population at the end of the year</td>
<td>612</td>
<td>0.5285</td>
<td>0.54323</td>
<td>0.5355</td>
<td>0.005</td>
</tr>
<tr>
<td>Agricultural employment level</td>
<td>The number of urban unit agricultural employment accounted for the total employment of that year The proportion of the number</td>
<td>612</td>
<td>0.229</td>
<td>0.267</td>
<td>0.247</td>
<td>0.015</td>
</tr>
<tr>
<td>Manufacturing employment level</td>
<td>Urban units of manufacturing employment accounted for the year Proportion of the total number of people employed</td>
<td>612</td>
<td>0.282</td>
<td>0.291</td>
<td>0.286</td>
<td>0.004</td>
</tr>
<tr>
<td>Employment level in the service sector</td>
<td>Urban unit service sector employment accounted for that Year Proportion of the total number of people employed</td>
<td>612</td>
<td>0.447</td>
<td>0.480</td>
<td>0.467</td>
<td>0.013</td>
</tr>
<tr>
<td>Artificial intelligence level</td>
<td>Robot market size (RMB 100 million yuan)</td>
<td>612</td>
<td>432.00</td>
<td>915.90</td>
<td>657.03</td>
<td>199.18</td>
</tr>
<tr>
<td>Economic development level</td>
<td>Local GDP level per capita level (ten thousand / person)</td>
<td>612</td>
<td>5.959</td>
<td>8.098</td>
<td>6.960</td>
<td>0.793</td>
</tr>
<tr>
<td>Information level</td>
<td>Internet penetration rate</td>
<td>612</td>
<td>0.428</td>
<td>0.901</td>
<td>0.662</td>
<td>0.196</td>
</tr>
<tr>
<td>industrial structure</td>
<td>The contribution rate of agriculture to GDP</td>
<td>612</td>
<td>0.039</td>
<td>0.104</td>
<td>0.059</td>
<td>0.027</td>
</tr>
<tr>
<td></td>
<td>Contribution rate of manufacturing to GDP</td>
<td>612</td>
<td>0.326</td>
<td>0.433</td>
<td>0.366</td>
<td>0.043</td>
</tr>
<tr>
<td></td>
<td>The contribution rate of services to GDP</td>
<td>612</td>
<td>0.463</td>
<td>0.635</td>
<td>0.575</td>
<td>0.070</td>
</tr>
<tr>
<td>Foreign investment utilization level</td>
<td>The proportion of total foreign investment in GDP</td>
<td>612</td>
<td>0.00106</td>
<td>0.00983</td>
<td>0.008</td>
<td>0.00388</td>
</tr>
<tr>
<td>Open degree of trade</td>
<td>Share of total imports and exports in GDP</td>
<td>612</td>
<td>0.033</td>
<td>0.342</td>
<td>0.269</td>
<td>0.132</td>
</tr>
</tbody>
</table>

5.4. Return analysis

Table 3 shows the result of artificial intelligence's return of employment. First of all, the combination of the regression equation is inspected. The values of the R² are 0.977, 0.983, 0.491, and 0.879. The fitting advantages are higher. Secondly, the P value of the T test is a significant horizontal test of the P value of less than 0.05, which means that the application of artificial intelligence technology at this stage generally reduces labor demand in general, that is, in the short term, the employment of artificial intelligence to China's labor market in the short term The replacement effect is greater than the creative effect. However, this did not lead to large-scale unemployment, but promoted the employment of labor. From the perspective of industrial structure, artificial intelligence has significantly improved the employment level of the service industry and agriculture, and has inhibited the labor employment of the manufacturing industry, that is, the replacement effect of artificial intelligence on agricultural labor employment is greater than the creative effect. Under the common effect of the three major industries' labor employment and creative effects, the level of artificial
intelligence level in my country is generally gradually decreasing for my country's labor employment demand.

Table 3. Assessment of the impact of AI on employment

<table>
<thead>
<tr>
<th>variable</th>
<th>Overall employment level</th>
<th>Agricultural employment level</th>
<th>Manufacturing employment level</th>
<th>Employment level in the service sector</th>
</tr>
</thead>
<tbody>
<tr>
<td>model</td>
<td>model0</td>
<td>model1</td>
<td>model2</td>
<td>model3</td>
</tr>
<tr>
<td>Artificial intelligence level</td>
<td>-0.988***</td>
<td>0.992***</td>
<td>-0.701*</td>
<td>0.983*</td>
</tr>
<tr>
<td>controlled variable</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>fixed effect</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>time effect</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>N</td>
<td>612</td>
<td>612</td>
<td>612</td>
<td>612</td>
</tr>
<tr>
<td>R^2</td>
<td>0.977</td>
<td>0.983</td>
<td>0.491</td>
<td>0.879</td>
</tr>
</tbody>
</table>

Note: *** indicates significant at the 0.001 level, ** significant at the 0.01 level and * significant at the 0.05 level.

5.5. Further analysis

Combined with the results of the development status and descriptive analysis and regression analysis of my country's artificial intelligence, further explore the impact of future artificial intelligence on my country's employment in the future. The impact of employment is not great. The overall impact is positive. It is manifested by the creative effect of artificial intelligence on employment than the alternative effect, which has promoted employment; however, with the accelerated promotion of artificial intelligence in the field of smart agriculture, agricultural employment is The population will continue to decrease. Second, the impact of artificial intelligence on the manufacturing industry is negative. On the one hand, the alternative effect of artificial intelligence is particularly obvious in the second industry, leading to a significant reduction in programmatic and mechanized physical work positions; on the other hand, with the in-depth application of artificial intelligence in the manufacturing field, intelligent manufacturing will create more. Most of the people's work and machine work positions, artificial intelligence's creative effect on employment will gradually appear. Third, the employment creation effect of artificial intelligence in the service industry is the beginning. However, with the continuous emergence of emerging formats such as smart cities, smart marketing and new retail, and smart cultural tourism, it has brought new opportunities for employment. The creative effect of artificial intelligence on the employment of service industry will be more obvious. Fourth, while artificial intelligence changes people's lifestyle and production links, the skills requirements of workers will become higher and higher.

6. Conclusion and Policy Recommendations

By constructing a labor demand model to analyze the influence mechanism of artificial intelligence applications on the total amount of labor employment, it can be seen through analysis: artificial intelligence may affect the labor demand through three channels of alternative effect channels, scale effect channels, and productivity channels. This study analyzed the provincial level of employment data at the provincial level of 2017-2021, and obtained the following conclusions: At this stage, the impact of artificial intelligence on the overall employment scale of China is not obvious; from the perspective of employment structure, artificial intelligence is significant, significant artificial intelligence is significant. It has enhanced the employment ratio of the service industry, but has inhibited the employment of the manufacturing industry, which has not significant impact on agriculture. Based on this, the following response strategies are proposed:

First, strengthen cross-departmental cooperation and establish a policy framework for overall collaboration. When the government meets the challenges of the artificial intelligence era, it is urgent to achieve coordinated development in various fields such as technology, industry and education through cross-department cooperation, thereby forming a policy framework of overall and synergy. In the field of science and technology, the government can promote close cooperation between different scientific research institutions and enterprises, and share innovative achievements and technical resources; at the industrial level, the government can encourage cooperation and sharing resources between industries, and jointly face industrial upgrading together. Challenges with transformation; in the field of education, the government can promote close collaboration between schools, research institutions and enterprises to ensure that the education system better meets the needs of the artificial intelligence era. Cross-department cooperation is not only the need for the government to deal with the era of artificial intelligence, but also an effective means to deal with complex challenges in the future.

Second, correctly understand the alternative effect of artificial intelligence and lead the development of artificial intelligence. Correctly understanding the alternative effect of artificial intelligence is essential for our understanding and guiding the development of this emerging technology. The alternative effect may lead to changes in the professional structure, traditional occupations may decrease, and new technical related positions may emerge. This may trigger the instability of the employment market. For the government, more flexible policies are needed to adapt to this change, including vocational training and re-training plans to ensure that people can meet new work needs. For individuals, we must correctly understand the auxiliary role of artificial intelligence. Although artificial intelligence may replace human work in some aspects, it can also provide people with more support and tools to help them better complete tasks. This requires individuals to have the ability to continue learning and adapting to give full play to the advantages of artificial intelligence while maintaining a good interaction with technology. Therefore, to correctly understand the alternative effect of artificial intelligence, it is necessary to comprehensively consider the level of society, economy, and individuals, formulate corresponding policies and strategies.
to guide the development of artificial intelligence, so that it can better serve human beings while minimizing potential potential to reduce potential. Negative impact.

Third, formulate differentiated employment and social security policies for different people. In order to promote employment more effectively, we need to differentiate employment policies to meet the needs of different industries. In the field of manufacturing, the application of artificial intelligence should be continuously promoted. While reducing some jobs, innovation and new employment forms, such as human-machine cooperation and emerging positions. In addition, the development of the service industry should also be strengthened, encouraging the in-depth integration of the artificial intelligence industry and the service industry, especially paying attention to the combination of the living service industry and the productive service industry, and exert the employment creative effects of emerging industries such as smart retail and smart cultural tourism. In addition, we need to distinguish employment groups of different skills. Artificial intelligence has a more obvious impact on the job positions of secondary skill groups, so targeted policy measures should be taken. However, for low-skilled and high-skilled groups, artificial intelligence will bring more employment opportunities. Highly-skilled jobs are difficult to replace because of their creativity and complexity, and the flexibility and non-programming of low-skilled jobs are still challenges that have not yet been resolved by artificial intelligence. Therefore, when responding to the impact of artificial intelligence, the government's employment assistance policy should focus on the manufacturing and secondary skill groups. In response to the service industry and emerging occupations, the government's work focus should be to improve social security policies to meet the social security needs of new employment forms.

Fourth, investment education and training, improve the talent security mechanism. It is recommended that the government should take more positive measures when facing the challenge of the artificial intelligence era, formulate employment policies and promote skills training, increase investment in the education system, and create more educational resources and education resources and more adapting to the era of artificial intelligence and education resources and educational resources and Chance. For example: The government can also encourage students and workers to choose majors related to artificial intelligence by providing scholarships, scholarships, and other forms of financial incentives to cultivate more professional talents with high levels of technical skills and innovative awareness and practical ability. Promote the upgrading and update of the talent team, so as to better adapt to the professional needs of the artificial intelligence era. At the same time, it provides appropriate transfer and re-training opportunities to help the affected labor force transform smoothly and support the development of emerging industries.

Fifth, actively advocate and promote innovation and entrepreneurship of artificial intelligence. Provide comprehensive support for the innovation of artificial intelligence, thereby helping the development of emerging industries, stimulating economic growth, and creating more new employment opportunities for society. This support system includes but not limited to the optimization of fund investment, policy incentives, and entrepreneurial ecological environment, provides more favorable conditions for enterprises and entrepreneurs, and promote the widespread application of artificial intelligence technology. Cultivate the growth of innovative enterprises and bring new impetus to the employment market. This measure is expected to not only promote the sustainable development of the economy, but also create more opportunities for the society, making the field of artificial intelligence a hot spot in attracting talents and investment, and helping society to achieve more balanced and sustainable development in scientific and technological innovation and employment opportunities Essence.

Acknowledgment

2. The general project of humanities and Social Sciences research of Guangzhou Nanyang Polytechnic College is "Potential substitution of Artificial Intelligence and professional ability development of employees" (NY-2023KYYB-23);

3. Guangzhou Nanyang Polytechnic College of Higher Education Teaching Reform Project "Research on Digital Upgrading of Higher Vocational Colleges" (NY-2022CQ-JG001);

References

