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Abstract: With the rapid development of deep learning technology, anomaly detection based on deep learning has become an
important research direction. This paper classifies and summarizes anomaly detection methods, covering traditional methods,
machine learning-based methods, and deep learning-based methods. It particularly introduces typical deep learning models,
analyzing their respective advantages and disadvantages. Experiments were conducted on two public datasets, and the
performance of each model in anomaly detection was compared in detail.
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1. Introduction

Time series data is an ordered collection of data that
changes over time, widely existing in various fields such as
financial trading, industrial operations, environmental
monitoring, and network traffic monitoring. In time series
data, there are always some data that differ significantly from
the overall characteristics of the dataset, which are known as
anomalies. Timely detection of these anomalies can
effectively reduce losses in industrial production and can even
prevent the occurrence of some disasters. Therefore, research
into anomaly detection has very important practical
significance. Currently, research on time series anomaly
detection mainly focuses on traditional statistical models and
machine learning models, but there are issues such as low
detection accuracy and weak generalization ability. With the
rapid development of deep learning technology, researchers
are gradually applying some deep learning algorithms,
including Convolutional Neural Networks (CNN) [1] and
Long Short-Term Memory networks (LSTM) [2], to anomaly
detection in fields such as medical image processing [3], pest
detection [4], and natural language processing [5].

2. Introduction to Anomaly Detection

2.1 Classification of Anomalies

Time series data is a collection of data points arranged in
chronological order, with each time point corresponding to an
observation. It is commonly used to describe events that
change over time. In time series anomaly detection, an
anomaly refers to individual data points that are significantly
deviant from the sample dataset and lie outside a specific
range. Anomalies are generally classified into three types:
point anomalies, contextual anomalies, and collective
anomalies:

(1) Point anomalies: These are values that are different
from most of the data points in the dataset. Point anomalies
can cause biases in data models, as these anomalies represent
errors in data collection or recording, or they may indicate
true rare events within the dataset.

(2) Contextual anomalies: These have relatively larger or
smaller values within a context or subset, but not globally.
Contextual anomalies are useful for understanding how data
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behaves under different conditions, but they can also lead to
the omission of important local information in global analysis.

(3) Collective anomalies: These are composed of multiple
related data points that, as a whole, are anomalous with
respect to the entire dataset. Collective anomalies represent
new patterns or trends in the data, or they may indicate some
kind of systemic problem.

2.2 Challenges Faced in Anomaly Detection

Time series data is characterized by its continuity and
complexity. In the vast amount of data, accurately and
efficiently detecting anomalies is crucial for system safety.
Currently, time series modeling methods based on deep
learning have shown good results in real-time status detection,
fault detection, and have effectively improved operational
efficiency. Against this backdrop, a large number of deep
learning research results have emerged in the field of time
series anomaly detection, while also facing many challenges:

(1) The recall rate of anomaly detection is low. Due to the
rarity and diversity of anomalous events, it is difficult to
identify all anomalies. Even many normal instances are
misclassified as anomalies, while true anomalies are
overlooked. Existing methods have a high false positive rate,
and reducing this rate and improving the recall rate is an
important challenge.

(2) Insufficient  high-dimensional data  processing
capability. In low-dimensional space, anomalous features are
more apparent, but in high-dimensional space, they become
hidden and less obvious. This increases the difficulty of
anomaly detection.

(3) Susceptibility to noise. Many weakly supervised or
semi-supervised anomaly detection methods assume that the
labels in the training data are correct, but such data may
contain noise samples that are incorrectly marked as another
category, thereby affecting the detection results.

(4) Limitations in model training time and computational
resources. Anomaly detection methods based on deep
learning typically require longer training times and a large
amount of computational resources, which can be a limiting
factor in situations with limited resources.



3. Classification of Anomaly Detection
Methods

The anomaly detection method can be divided into three
categories, supervised, unsupervised and semi-supervised
according to whether the data set has labels:

(1) Supervised anomaly detection means that all the data in
the training set have labels, but it is very difficult to obtain the
accurate labeled training data set, which usually requires
manual annotation, so the application scope of supervised
anomaly detection is small;

(2) Unsupervised anomaly detection means that the data in
the training set are unmarked, and unsupervised anomaly
detection is widespread;

Semi-supervised abnormality detection means that some
samples in the training set have labels, and the use of labeled
data can improve the detection performance of the model.
Therefore, the semi-supervised anomaly detection is also
widely used.

Anomaly detection can be roughly divided into three
categories according to the way of processing data: statistical
based methods, machine learning based methods and deep
learning based methods.

3.1 Statistics-based Methods

The advantages of statistics-based anomaly detection
methods are low complexity and fast calculation speed, which
are suitable for scenarios without historical data. This method
ignores the temporal indexing in the time series and takes the
points in the time series as statistical sample points. Assuming
that the data follows some statistical model, the data points
with a small probability of occurrence are anomalies. The
statistics-based abnormality detection algorithm [5] is an
early and mature technology, and n-Sigma and Boxplot are
the most common statistical methods. The n-Sigma assumes
that the data follow a normal distribution, and the data whose
distance from the mean exceeds n times the standard
deviation are labeled as abnormal. Classical parametric
statistical models such as mobile autoregressive models also
perform anomaly detection by assuming that the basic
distribution of normal data fits the preset distribution. The
Gaussian mixture model estimates the probability density of
normal class data, and introduces a confidence measure to
estimate the reliability of normal data. When the confidence
takes a large value, the algorithm updates the parameter once.
Non-parametric statistical models are based on kernel
functions, and they learn the underlying distribution of
normal behavior directly from a given data, but are difficult
for the processing of high-dimensional data. Statistics-based
methods are highly hypothetical, and the efficiency of
abnormality detection will decrease when the amount of data
and dimensionality increase.

3.2 Machine Learning-based Methods

Machine learning-based anomaly detection algorithms can
be classified into clustering-based, classification-based, and
density-based anomaly detection algorithms. Clustering-
based anomaly detection combines clustering with anomaly
detection algorithms, using existing clustering algorithms
directly or indirectly to alleviate the problem of low detection
efficiency in high-dimensional sparse data. This algorithm
considers data that is isolated or far from the cluster center as
anomalies [6-8]. For example, the DBSCAN algorithm
clusters data in wireless sensor networks and considers low-
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density areas as anomalies. The K-means algorithm clusters
traffic data [9], and makes judgments on normal and abnormal
results based on the assumption principle. Anomaly detection
based on Bayesian networks [10] estimates the posterior
probability distribution of normal and abnormal data by
constructing a naive Bayesian network, aggregates the
posterior probability distribution of data attributes, and
extends the univariate classification algorithm to multivariate
anomaly detection tasks. It has already been applied in areas
such as network intrusion and image anomaly detection, but
due to its conditional independence assumption, it often
performs poorly in practical applications. Clustering-based
anomaly detection algorithms are an unsupervised detection
method, with the greatest advantage being the lack of labeled
data and ease of understanding, but the detection effect and
computational complexity decrease with increasing
dimensions.

Classification-based anomaly detection algorithms assume
that normal data can be smoothly mapped to a feature
subspace, and data points that cannot be mapped to the
subspace are considered as anomalies. The Isolation Forest
anomaly detection algorithm uses a binary tree data structure
to classify anomalies at the root of the tree and normal data
into deeper nodes. The Support Vector Machine (SVM)
anomaly detection algorithm [11-12] maps normal and
anomalous data to a low-dimensional space through SVM,
and finds a decision boundary in the feature space to separate
normal and anomalous data. Due to the difficulty in obtaining
negative class samples in anomaly detection, a variant of this
algorithm, One-Class SVM, has been developed that can
make use of normal data for anomaly detection. However, this
algorithm also has some drawbacks, such as the computation
of its kernel function requiring a significant amount of
computational resources.

Density-based anomaly detection considers high-density
areas as normal and low-density areas as abnormal. The
fundamental idea is to detect anomalies by comparing the
density of data with its neighboring points. In this category of
algorithms, the Local Outlier Factor (LOF) algorithm views
anomalies not as a binary attribute but as a measure, with a
higher LOF value indicating a greater likelihood of the data
being anomalous. Its variant, the Connectivity-based Outlier
Factor (COF), calculates the density of different data regions
within the dataset and considers regions with lower density as
outliers. Normal data points have strong connectivity with
other data points within their neighborhood, whereas
anomalous points have weaker connectivity. The classic K-
nearest neighbor (KNN) anomaly detection [13] employs
pruning techniques to improve running speed when dealing
with high-dimensional data. Density-based bias sampling
algorithms combine probabilistic analysis with density
calculations to reduce the time and space complexity of the
algorithm, enhancing the efficiency of anomaly detection.
Although density-based anomaly detection algorithms do not
require labels, they have high complexity and are sensitive to
the choice of parameters such as the anomaly factor threshold.

In addition to the more common machine learning-based
anomaly detection methods, there are also anomaly detection
methods based on information theory. Assuming that
anomalies have a greater impact on content information
compared to normal points, algorithms determine whether the
removed data is anomalous based on the extent of change in
content information after data removal. Information entropy



anomaly detection uses information entropy to identify
anomalies. If the entropy of the dataset decreases after
removing a data point, then the removed point is considered
an anomaly. The information bottleneck method defines
anomalous data clusters using the information bottleneck and
detects anomalies based on the difference between the
distribution of anomalous data clusters and normal data
clusters. Anomaly detection algorithms based on principal
component analysis use orthogonal transformations to map
data into a low-dimensional subspace, where the features in
the low-dimensional space retain the key components of the
original data to the greatest extent. Vector-based anomaly
detection uses the variance of vector angles as a criterion for
identifying anomalies, which to some extent alleviates the
difficulties of dealing with high-dimensional data.

3.3 Deep Learning-based Methods

Deep learning-based time series anomaly detection has
become a popular research direction in recent years, using
various neural networks to extract data features and identify
anomalies that do not conform to patterns from these features.
It can be divided into three categories: prediction-based time
series anomaly detection algorithms, reconstruction-based
anomaly detection algorithms, and generation-based anomaly
detection algorithms.

Prediction-based time series anomaly detection uses neural
networks to predict time series and determines anomalies by
comparing the distance between predicted values and original
data. Convolutional anomaly detection [15] learns the
geometric shape of data features by using the Jacobian matrix
output from a regularized encoder, achieving a smoother data
representation space, and the algorithm can more effectively
detect anomalies from normal data. LSTM anomaly detection
[16-17] predicts time series, taking adjacent data segments as
true values, and identifies anomalies by comparing predicted
values with true values. Multilayer convolutional neural
networks [18] reduce the dimensionality of the original data
with multiple layers of CNNs and then increase it again,
training the network so that the result after dimensionality
increase approximates the original data segments, and
anomaly detection is performed by comparing the differences
before and after training.

Reconstruction-based time series anomaly detection is
achieved by minimizing reconstruction errors, with the most
classic reconstruction algorithm being the autoencoder and its
variants. Spectral encoding anomaly detection [19] constructs
a denoising autoencoder based on bidirectional LSTM,
mapping data to spectral features, with the decoder
reconstructing the original data and determining whether the
input data is anomalous based on the difference between the
reconstructed data and the original data. Group-robust deep
autoencoders decompose data into reconstructed data and
anomalous noise data, using sparse regularization terms to
constrain the anomalous noise data, thereby achieving robust
anomaly detection results. Bayesian convolutional
autoencoders [20] show a significant difference between the
reconstructed data and the original data when anomalous data
is input into the autoencoder. Ensemble methods integrate
different types of autoencoders to detect anomalous data,
replacing fully connected autoencoders with autoencoders of
different structures and connection methods, reducing the
computational complexity of the algorithm. Deep anomaly
detection based on variational autoencoders [21] uses
variational inference mechanisms to learn the generative
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distribution information of normal data. Improved variational
lower bound anomaly detection trains the model with an
improved version of the variational lower bound and uses
Markov chain Monte Carlo strategies to detect anomalies in
the data. The variational deviation network model uses
variational autoencoders to generate reference scores,
offering better scalability and stronger interpretability for
anomalous data. However, this model also has certain
limitations, as it uses a normal distribution to fit the
probability distribution of normal samples. When training
data and test data come from different data distributions,
variational autoencoders cannot be used for anomaly
detection on the data.

Generation-based time series anomaly detection [22]
adopts a game-theoretic approach to learn the marginal
distribution information of normal data. Detection generative
adversarial networks [23] use convolutional generative
adversarial networks to learn the population distribution of
normal data, and when the model is input with anomalous
data, the generated anomalous data differs significantly from
the original data, with the difference serving as an anomaly
score. Conditional generative anomaly detection [24] uses
conditional generative adversarial networks to learn the
distribution of the data generation space and the data
inference space, constructing data encoders and data decoders
to extract features and reconstruct data, respectively, while
other encoders learn the latent space representation of the
reconstructed data. Active learning anomaly detection
constructs multiple generators to generate different potential
outlier data to avoid the problem of mode collapse.
Adversarial inference anomaly detection [25] is an inference-
based anomaly detection algorithm that uses bidirectional
generative adversarial networks to infer generated data and
learn the joint distribution of normal and anomalous data.
Anomalies are determined by calculating the reconstruction
error of data features.

4. Deep Anomaly Detection Model

4.1 Deep Anomaly Detection Model Based on
Transformer

The Transformer model is a deep learning model
architecture for sequence-to-sequence tasks in natural
language processing, introducing self-attention mechanism
and multi-head attention mechanism to escape the sequence
dependence problem inherent in traditional recurrent neural
networks. It is mainly composed of four parts: input part,
multi-layer encoder, multi-layer decoder and output part.

(1) Input part: generate a position vector for each position
of the input sequence, so that the model can understand the
position information in the sequence.(2) Encoder part:
composed of N encoder layers. Each encoder layer consists of
two sub-layer connected structures: multi-head self-attention
sublayer and feedforward fully connected sublayer.(3)
Decoder part: stacked of N decoder layers. Each decoder layer
consists of three sub-layer connected structures: a masked
multi-head self-attention sub-layer, a multi-head attention
sub-layer, and a feedforward fully connected sub-layer. Each
sublayer is connected by a normalized layer and a residual
connection.(4) Output part: convert the vector of the output of
the decoder into the linear layer of the final output dimension
and the softmax layer of converting the output of the linear
layer into the probability distribution.
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Figure 1. Transformer Brief diagram of the structure

4.2 Deep Anomaly Detection Model Based on
Autoencoder
The autoencoder consists of two components, the encoder
and the decoder, where the input is compressed into the latent

spatial representation through the encoder, and the decoder
uses these latent spatial representations as inputs for the

autoencoder, the input and output are approximately identical
to effectively learn the data features. The autoencoder is a
widely used data compression technology that can not only be
used in both for dimension reduction and feature learning, but
also as a good data noise reduction algorithm. Autoencoder
and its variants have been widely used in anomaly detection
and data generation, and it is an unsupervised deep learning

reconstruction output. By adding constraints to the method.
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Figure 2. Structure diagram of the autoencoder

In unsupervised training, the loss function helps to correct
errors generated by the model, with the goal to make the
inputs and outputs of the model as close as possible. As shown
in the following formula, the input is sent to the autoencoder
and reconstructed, the encoder by the function f and the
decoder by the function g:

h(x) = f(wyx + by)
o(x) = g(wzh(x) + by)

Where x is the input; w; and w; are the weight matrices of
the input-output layers and the hidden layers, respectively;
and b, and b, are the bias corresponding to each stage.

The autoencoder structure is clear and easy to understand,

suitable for different types of data, and many powerful
variants are derived. However, abnormalities in the training
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data may bias the learned feature representation. Moreover,
the objective function of data reconstruction is mainly aimed
at dimension reduction and data compression, not specifically
for anomaly detection. This causes the learned feature
representation tends to generalize latent patterns and is not
optimized for anomaly detection.

4.3 Deep Anomaly Detection Model Based on
LSTM

As a variant of recurrent neural network (RNN), LSTM
inherits the ability of RNN to process time series data, which
can make use of historical data for predict, while overcoming
the problems of short-term memory and gradient
disappearance of RNN. Through its unique memory module,
LSTM is able to learn and retain long-term dependent



information, thus enabling the model to perform well when
processing time-series data. Recently, models based on
LSTM models and their variants have been widely used in
various research fields, solving many problems that are
difficult to overcome by traditional Al algorithms.

For a given time series input x;, LSTM jointly controls its
unit state ¢, and output /, by forgetting the gate, input gate and
output gate:

fe = 0oWys - x¢ + Wys - heq + by)
ip =0(Wy-x; + Wy~ heq + by)
0 = U(M/aco “Xe + Wy ht—l + bo)

¢t = [r®cr—1 + 1 @tanh(Wye - xp + Whe - he—q
+ b.)
h; = 0;@tanh(c;)

Where W and b represent the weight matrix and the bias
vector, respectively. The forgetting gate is responsible for
discarding the useless information existing in the past cell
state of the LSTM, retaining the information added to the
current cell state of the LSTM, and determining the
information output. Due to the presence of these gates, LSTM
can more easily simulate long-term change patterns in time
series.
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Figure 3. Structural diagram of the LSTM cells

LSTM network model of time series in the study of various
time series, which can learn adaptively from a large number
of normal samples and realize real-time anomaly detection.
There are also some deficiencies, including high
computational costs, overfitting risks, complex parameter
adjustments, and insufficient sensitivity to some abnormal
types, which may affect their performance and efficiency in
practical applications.

4.4 Deep Anomaly Detection Model Based on
GAN

Generating Generative Adversarial Network (GAN) is
mainly composed of the generator and the discriminator, in
which the discriminator is responsible for the global judgment,
and the generator focuses on the generation of local details.
The goal of the generator is to maximize capturing the
characteristics of the training sample to generate realistic
samples sufficient to fool the discriminator. The purpose of
the discriminator is to compare the two, to distinguish the
authenticity of the input data as much as possible, and to
narrow the deviation between the generated sample and the
real sample.

Figure 3. GAN structure diagram
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In the training process, while the generator improves the
falsification ability, the discriminator also improves the
discrimination ability. The confrontation between the
generator and the discriminator forms a dynamic game
process. Nash equilibrium is reached when the generator can
generate data that the discriminant has difficulty
distinguishing between true and false. The GAN optimization
objective is to maximize discriminant parameters, while
minimizing generator parameters. The objective function
formula is as follows:

MingMaxpV(D,G) = Exp,,,,x)[logD(x)]
+ Ex~p,z)[log(1 = D(G(2))]

Where z represents the random noise of the input, P: (z)
represents the distribution of the generated network, x
represents the real data, and Pgu (x) represents the
distribution of the real data. The discriminant will bring
D(G(2)) to 0, the generator will bring D(G(z)) to 1, and when
D(G(2)) =0.5, the generated sample can be false, theoretically
reaching Nash equilibrium.

GAN has been very mature in image data processing, and
a large number of existing GAN correlation models and
theories provide a theoretical basis for anomaly detection.
However, there are still some defects in GAN-based
abnormality detection: the GAN training process may face the
non-convergence problem, which increases the training
difficulty; the generator network may be misled when the true
distribution of the data set is complex or the training data
contains inaccurate outliers.



4.5 Deep Anomaly Detection Model Based on
CNN

When processing images, CNN treats the images as two-
dimensional matrices, and gradually extracts and combines
features through multi-layer convolution operation and
pooling operation to realize the efficient processing of images.
In the time series analysis, the time series can be regarded as
a one-dimensional vector of 1*n. The advantage of applying
convolutional neural networks in time series prediction is that
their multi-layer network structure enables massively parallel
processing. This structure can build a deep learning network,
improving performance while also saving time.

5. Experiment
5.1 Dataset

To compare the effects of different models in anomaly
detection applications, this paper selected two public datasets
to conduct experiments on various models.

One of the datasets is the KPI dataset released by the
AIOPS data competition [26], which consists of multiple KPI
curves, and the anomaly labels come from several internet
companies including Sogou, Tencent, and eBay. Most of the
KPI curves have data points with a 1-minute interval, while
some have a 5-minute interval. These datasets cover time
series with different time intervals and a wide range of
patterns, and are commonly used to evaluate the performance
of time series anomaly detection. The other dataset comes
from Huawei's NAIE platform, which is a KPI anomaly
detection dataset based on Huawei's real business. It includes
a labeled training set and an unlabeled testing set, and its data
format is basically consistent with the AIOPS dataset.

5.2 Evaluation Metrics

In evaluating model performance, Precision, Recall, F1-
score, and accuracy (Acc) are commonly used metrics, which
are defined as follows:

T, + Ty
T, +F, + T, + F,

T

" T,+F,
__
T, + Fp
PR

P+R

Acc =

R

F1=2X

Among them, 7, represents the number of instances
correctly detected as normal and are actually normal, F),
represents the number of instances detected as normal but are
actually abnormal, 7, represents the number of instances
correctly detected as abnormal and are actually abnormal, and
F, represents the number of instances detected as abnormal
but are actually normal.

5.3 Experimental Analysis

The experiment compares the effectiveness of five
representative deep learning anomaly detection algorithms,
which are introduced in detail in the text, on time series data.
To ensure the consistency and comparability of the
experiment, the evaluation was conducted on two public KPI
anomaly detection datasets. This ensures the applicability and
representativeness of the research results, providing a reliable
basis for technology selection in different application
scenarios.

Experiments conducted on the KPI dataset released by the
AIOPS data competition yielded a comparison of
performance metrics including precision, recall, F1 score, and
accuracy, as shown in the following table:

Table 1. Results of Models’ Anomaly Detection Metrics

Detection Methods Precision Recall F1-score Accuracy
AE 0.80 0.78 0.85 0.77
Transformer 0.73 0.80 0.83 0.75
LST™M 0.87 0.90 0.87 0.86
GAN 0.85 0.88 0.86 0.83
CNN 0.82 0.87 0.86 0.85
— o Il Accuracy
B 3 F-score
0.8 - [ Recall
] Precision
0.6
[E
0.4
0.2
0.0-
AE Transformer  LSTM GAN CNN

Figure 5. Detection Results of Models on KPI Data
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On the KPI anomaly detection dataset released by Huawei's
NAIE platform, only the F1 score performance metric was
evaluated. It can be observed that different models perform
relatively well on the AIOPS dataset.

Table 2. The F1-Score of Models on the Huawei Dataset

Detection Methods HUAWEI
AE 0.73
Transformer 0.72
LSTM 0.74
GAN 0.73
CNN 0.69

The experimental results from two datasets indicate that
LSTM, GAN, and CNN perform well in anomaly detection
tasks, achieving high scores in evaluation metrics such as
precision, recall, F1 score, and accuracy. Different types of
deep learning models have their own focuses in anomaly
detection tasks. LSTM is effective in capturing complex
features and long-term dependencies in the data; GAN has an
advantage in generating deceptive anomaly samples; while
LSTM and CNN excel in handling the sequential and local
features of time series data. Additionally, although the
performance of the five algorithms on Huawei’s KPI dataset
is slightly inferior, the average F1 score exceeds 0.7. This
suggests that deep learning-based anomaly detection
algorithms have good generalization capabilities and can be
somewhat applied to real-world production environments.

6. Summary

Time series anomaly detection has important practical

value and is a subject that has been studied extensively. In
actual work, it is often difficult to obtain high-quality labels
for supervised learning anomaly detection algorithms, so
unsupervised or semi-supervised deep learning anomaly
detection algorithms have higher universality and a wider
range of application scenarios.
This paper provides a classification overview of existing
anomaly detection methods and focuses on introducing five
classic deep learning models. The performance of different
deep learning time series anomaly detection algorithms was
evaluated on two public KPI anomaly detection datasets. The
experimental results show that LSTM, GAN, and CNN
perform well in the anomaly detection task. Meanwhile, the
average F1 score of the five deep learning algorithms
exceeded 0.7, proving that the deep learning-based anomaly
detection model has good generalization ability. Deep
learning technology has certain application value in time
series anomaly detection, but there are also certain limitations,
such as high training cost, complex model, and insufficient
sensitivity to certain anomaly types.
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