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Abstract: With the rapid development of deep learning technology, anomaly detection based on deep learning has become an 
important research direction. This paper classifies and summarizes anomaly detection methods, covering traditional methods, 
machine learning-based methods, and deep learning-based methods. It particularly introduces typical deep learning models, 
analyzing their respective advantages and disadvantages. Experiments were conducted on two public datasets, and the 
performance of each model in anomaly detection was compared in detail. 
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1. Introduction 
Time series data is an ordered collection of data that 

changes over time, widely existing in various fields such as 
financial trading, industrial operations, environmental 
monitoring, and network traffic monitoring. In time series 
data, there are always some data that differ significantly from 
the overall characteristics of the dataset, which are known as 
anomalies. Timely detection of these anomalies can 
effectively reduce losses in industrial production and can even 
prevent the occurrence of some disasters. Therefore, research 
into anomaly detection has very important practical 
significance. Currently, research on time series anomaly 
detection mainly focuses on traditional statistical models and 
machine learning models, but there are issues such as low 
detection accuracy and weak generalization ability. With the 
rapid development of deep learning technology, researchers 
are gradually applying some deep learning algorithms, 
including Convolutional Neural Networks (CNN) [1] and 
Long Short-Term Memory networks (LSTM) [2], to anomaly 
detection in fields such as medical image processing [3], pest 
detection [4], and natural language processing [5]. 

2. Introduction to Anomaly Detection 

2.1 Classification of Anomalies 
Time series data is a collection of data points arranged in 

chronological order, with each time point corresponding to an 
observation. It is commonly used to describe events that 
change over time. In time series anomaly detection, an 
anomaly refers to individual data points that are significantly 
deviant from the sample dataset and lie outside a specific 
range. Anomalies are generally classified into three types: 
point anomalies, contextual anomalies, and collective 
anomalies: 

(1) Point anomalies: These are values that are different 
from most of the data points in the dataset. Point anomalies 
can cause biases in data models, as these anomalies represent 
errors in data collection or recording, or they may indicate 
true rare events within the dataset. 

(2) Contextual anomalies: These have relatively larger or 
smaller values within a context or subset, but not globally. 
Contextual anomalies are useful for understanding how data 

behaves under different conditions, but they can also lead to 
the omission of important local information in global analysis. 

(3) Collective anomalies: These are composed of multiple 
related data points that, as a whole, are anomalous with 
respect to the entire dataset. Collective anomalies represent 
new patterns or trends in the data, or they may indicate some 
kind of systemic problem. 

2.2 Challenges Faced in Anomaly Detection 
Time series data is characterized by its continuity and 

complexity. In the vast amount of data, accurately and 
efficiently detecting anomalies is crucial for system safety. 
Currently, time series modeling methods based on deep 
learning have shown good results in real-time status detection, 
fault detection, and have effectively improved operational 
efficiency. Against this backdrop, a large number of deep 
learning research results have emerged in the field of time 
series anomaly detection, while also facing many challenges: 

(1) The recall rate of anomaly detection is low. Due to the 
rarity and diversity of anomalous events, it is difficult to 
identify all anomalies. Even many normal instances are 
misclassified as anomalies, while true anomalies are 
overlooked. Existing methods have a high false positive rate, 
and reducing this rate and improving the recall rate is an 
important challenge. 

(2) Insufficient high-dimensional data processing 
capability. In low-dimensional space, anomalous features are 
more apparent, but in high-dimensional space, they become 
hidden and less obvious. This increases the difficulty of 
anomaly detection. 

(3) Susceptibility to noise. Many weakly supervised or 
semi-supervised anomaly detection methods assume that the 
labels in the training data are correct, but such data may 
contain noise samples that are incorrectly marked as another 
category, thereby affecting the detection results. 

(4) Limitations in model training time and computational 
resources. Anomaly detection methods based on deep 
learning typically require longer training times and a large 
amount of computational resources, which can be a limiting 
factor in situations with limited resources. 
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3. Classification of Anomaly Detection 
Methods 

The anomaly detection method can be divided into three 
categories, supervised, unsupervised and semi-supervised 
according to whether the data set has labels: 

(1) Supervised anomaly detection means that all the data in 
the training set have labels, but it is very difficult to obtain the 
accurate labeled training data set, which usually requires 
manual annotation, so the application scope of supervised 
anomaly detection is small; 

(2) Unsupervised anomaly detection means that the data in 
the training set are unmarked, and unsupervised anomaly 
detection is widespread; 

Semi-supervised abnormality detection means that some 
samples in the training set have labels, and the use of labeled 
data can improve the detection performance of the model. 
Therefore, the semi-supervised anomaly detection is also 
widely used. 

Anomaly detection can be roughly divided into three 
categories according to the way of processing data: statistical 
based methods, machine learning based methods and deep 
learning based methods. 

3.1 Statistics-based Methods 
The advantages of statistics-based anomaly detection 

methods are low complexity and fast calculation speed, which 
are suitable for scenarios without historical data. This method 
ignores the temporal indexing in the time series and takes the 
points in the time series as statistical sample points. Assuming 
that the data follows some statistical model, the data points 
with a small probability of occurrence are anomalies. The 
statistics-based abnormality detection algorithm [5] is an 
early and mature technology, and n-Sigma and Boxplot are 
the most common statistical methods. The n-Sigma assumes 
that the data follow a normal distribution, and the data whose 
distance from the mean exceeds n times the standard 
deviation are labeled as abnormal. Classical parametric 
statistical models such as mobile autoregressive models also 
perform anomaly detection by assuming that the basic 
distribution of normal data fits the preset distribution. The 
Gaussian mixture model estimates the probability density of 
normal class data, and introduces a confidence measure to 
estimate the reliability of normal data. When the confidence 
takes a large value, the algorithm updates the parameter once. 
Non-parametric statistical models are based on kernel 
functions, and they learn the underlying distribution of 
normal behavior directly from a given data, but are difficult 
for the processing of high-dimensional data. Statistics-based 
methods are highly hypothetical, and the efficiency of 
abnormality detection will decrease when the amount of data 
and dimensionality increase. 

3.2 Machine Learning-based Methods 
Machine learning-based anomaly detection algorithms can 

be classified into clustering-based, classification-based, and 
density-based anomaly detection algorithms. Clustering-
based anomaly detection combines clustering with anomaly 
detection algorithms, using existing clustering algorithms 
directly or indirectly to alleviate the problem of low detection 
efficiency in high-dimensional sparse data. This algorithm 
considers data that is isolated or far from the cluster center as 
anomalies [6-8]. For example, the DBSCAN algorithm 
clusters data in wireless sensor networks and considers low-

density areas as anomalies. The K-means algorithm clusters 
traffic data [9], and makes judgments on normal and abnormal 
results based on the assumption principle. Anomaly detection 
based on Bayesian networks [10] estimates the posterior 
probability distribution of normal and abnormal data by 
constructing a naive Bayesian network, aggregates the 
posterior probability distribution of data attributes, and 
extends the univariate classification algorithm to multivariate 
anomaly detection tasks. It has already been applied in areas 
such as network intrusion and image anomaly detection, but 
due to its conditional independence assumption, it often 
performs poorly in practical applications. Clustering-based 
anomaly detection algorithms are an unsupervised detection 
method, with the greatest advantage being the lack of labeled 
data and ease of understanding, but the detection effect and 
computational complexity decrease with increasing 
dimensions. 

Classification-based anomaly detection algorithms assume 
that normal data can be smoothly mapped to a feature 
subspace, and data points that cannot be mapped to the 
subspace are considered as anomalies. The Isolation Forest 
anomaly detection algorithm uses a binary tree data structure 
to classify anomalies at the root of the tree and normal data 
into deeper nodes. The Support Vector Machine (SVM) 
anomaly detection algorithm [11-12] maps normal and 
anomalous data to a low-dimensional space through SVM, 
and finds a decision boundary in the feature space to separate 
normal and anomalous data. Due to the difficulty in obtaining 
negative class samples in anomaly detection, a variant of this 
algorithm, One-Class SVM, has been developed that can 
make use of normal data for anomaly detection. However, this 
algorithm also has some drawbacks, such as the computation 
of its kernel function requiring a significant amount of 
computational resources. 

Density-based anomaly detection considers high-density 
areas as normal and low-density areas as abnormal. The 
fundamental idea is to detect anomalies by comparing the 
density of data with its neighboring points. In this category of 
algorithms, the Local Outlier Factor (LOF) algorithm views 
anomalies not as a binary attribute but as a measure, with a 
higher LOF value indicating a greater likelihood of the data 
being anomalous. Its variant, the Connectivity-based Outlier 
Factor (COF), calculates the density of different data regions 
within the dataset and considers regions with lower density as 
outliers. Normal data points have strong connectivity with 
other data points within their neighborhood, whereas 
anomalous points have weaker connectivity. The classic K-
nearest neighbor (KNN) anomaly detection [13] employs 
pruning techniques to improve running speed when dealing 
with high-dimensional data. Density-based bias sampling 
algorithms combine probabilistic analysis with density 
calculations to reduce the time and space complexity of the 
algorithm, enhancing the efficiency of anomaly detection. 
Although density-based anomaly detection algorithms do not 
require labels, they have high complexity and are sensitive to 
the choice of parameters such as the anomaly factor threshold. 

In addition to the more common machine learning-based 
anomaly detection methods, there are also anomaly detection 
methods based on information theory. Assuming that 
anomalies have a greater impact on content information 
compared to normal points, algorithms determine whether the 
removed data is anomalous based on the extent of change in 
content information after data removal. Information entropy 
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anomaly detection uses information entropy to identify 
anomalies. If the entropy of the dataset decreases after 
removing a data point, then the removed point is considered 
an anomaly. The information bottleneck method defines 
anomalous data clusters using the information bottleneck and 
detects anomalies based on the difference between the 
distribution of anomalous data clusters and normal data 
clusters. Anomaly detection algorithms based on principal 
component analysis use orthogonal transformations to map 
data into a low-dimensional subspace, where the features in 
the low-dimensional space retain the key components of the 
original data to the greatest extent. Vector-based anomaly 
detection uses the variance of vector angles as a criterion for 
identifying anomalies, which to some extent alleviates the 
difficulties of dealing with high-dimensional data. 

3.3 Deep Learning-based Methods 
Deep learning-based time series anomaly detection has 

become a popular research direction in recent years, using 
various neural networks to extract data features and identify 
anomalies that do not conform to patterns from these features. 
It can be divided into three categories: prediction-based time 
series anomaly detection algorithms, reconstruction-based 
anomaly detection algorithms, and generation-based anomaly 
detection algorithms. 

Prediction-based time series anomaly detection uses neural 
networks to predict time series and determines anomalies by 
comparing the distance between predicted values and original 
data. Convolutional anomaly detection [15] learns the 
geometric shape of data features by using the Jacobian matrix 
output from a regularized encoder, achieving a smoother data 
representation space, and the algorithm can more effectively 
detect anomalies from normal data. LSTM anomaly detection 
[16-17] predicts time series, taking adjacent data segments as 
true values, and identifies anomalies by comparing predicted 
values with true values. Multilayer convolutional neural 
networks [18] reduce the dimensionality of the original data 
with multiple layers of CNNs and then increase it again, 
training the network so that the result after dimensionality 
increase approximates the original data segments, and 
anomaly detection is performed by comparing the differences 
before and after training. 

Reconstruction-based time series anomaly detection is 
achieved by minimizing reconstruction errors, with the most 
classic reconstruction algorithm being the autoencoder and its 
variants. Spectral encoding anomaly detection [19] constructs 
a denoising autoencoder based on bidirectional LSTM, 
mapping data to spectral features, with the decoder 
reconstructing the original data and determining whether the 
input data is anomalous based on the difference between the 
reconstructed data and the original data. Group-robust deep 
autoencoders decompose data into reconstructed data and 
anomalous noise data, using sparse regularization terms to 
constrain the anomalous noise data, thereby achieving robust 
anomaly detection results. Bayesian convolutional 
autoencoders [20] show a significant difference between the 
reconstructed data and the original data when anomalous data 
is input into the autoencoder. Ensemble methods integrate 
different types of autoencoders to detect anomalous data, 
replacing fully connected autoencoders with autoencoders of 
different structures and connection methods, reducing the 
computational complexity of the algorithm. Deep anomaly 
detection based on variational autoencoders [21] uses 
variational inference mechanisms to learn the generative 

distribution information of normal data. Improved variational 
lower bound anomaly detection trains the model with an 
improved version of the variational lower bound and uses 
Markov chain Monte Carlo strategies to detect anomalies in 
the data. The variational deviation network model uses 
variational autoencoders to generate reference scores, 
offering better scalability and stronger interpretability for 
anomalous data. However, this model also has certain 
limitations, as it uses a normal distribution to fit the 
probability distribution of normal samples. When training 
data and test data come from different data distributions, 
variational autoencoders cannot be used for anomaly 
detection on the data. 

Generation-based time series anomaly detection [22] 
adopts a game-theoretic approach to learn the marginal 
distribution information of normal data. Detection generative 
adversarial networks [23] use convolutional generative 
adversarial networks to learn the population distribution of 
normal data, and when the model is input with anomalous 
data, the generated anomalous data differs significantly from 
the original data, with the difference serving as an anomaly 
score. Conditional generative anomaly detection [24] uses 
conditional generative adversarial networks to learn the 
distribution of the data generation space and the data 
inference space, constructing data encoders and data decoders 
to extract features and reconstruct data, respectively, while 
other encoders learn the latent space representation of the 
reconstructed data. Active learning anomaly detection 
constructs multiple generators to generate different potential 
outlier data to avoid the problem of mode collapse. 
Adversarial inference anomaly detection [25] is an inference-
based anomaly detection algorithm that uses bidirectional 
generative adversarial networks to infer generated data and 
learn the joint distribution of normal and anomalous data. 
Anomalies are determined by calculating the reconstruction 
error of data features. 

4. Deep Anomaly Detection Model 

4.1 Deep Anomaly Detection Model Based on 
Transformer 

The Transformer model is a deep learning model 
architecture for sequence-to-sequence tasks in natural 
language processing, introducing self-attention mechanism 
and multi-head attention mechanism to escape the sequence 
dependence problem inherent in traditional recurrent neural 
networks. It is mainly composed of four parts: input part, 
multi-layer encoder, multi-layer decoder and output part. 

 (1) Input part: generate a position vector for each position 
of the input sequence, so that the model can understand the 
position information in the sequence.(2) Encoder part: 
composed of N encoder layers. Each encoder layer consists of 
two sub-layer connected structures: multi-head self-attention 
sublayer and feedforward fully connected sublayer.(3) 
Decoder part: stacked of N decoder layers. Each decoder layer 
consists of three sub-layer connected structures: a masked 
multi-head self-attention sub-layer, a multi-head attention 
sub-layer, and a feedforward fully connected sub-layer. Each 
sublayer is connected by a normalized layer and a residual 
connection.(4) Output part: convert the vector of the output of 
the decoder into the linear layer of the final output dimension 
and the softmax layer of converting the output of the linear 
layer into the probability distribution. 
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Figure 1. Transformer Brief diagram of the structure 

 

4.2 Deep Anomaly Detection Model Based on 
Autoencoder 

The autoencoder consists of two components, the encoder 
and the decoder, where the input is compressed into the latent 
spatial representation through the encoder, and the decoder 
uses these latent spatial representations as inputs for the 
reconstruction output. By adding constraints to the 

autoencoder, the input and output are approximately identical 
to effectively learn the data features. The autoencoder is a 
widely used data compression technology that can not only be 
used in both for dimension reduction and feature learning, but 
also as a good data noise reduction algorithm. Autoencoder 
and its variants have been widely used in anomaly detection 
and data generation, and it is an unsupervised deep learning 
method. 
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Figure 2. Structure diagram of the autoencoder 

 

In unsupervised training, the loss function helps to correct 
errors generated by the model, with the goal to make the 
inputs and outputs of the model as close as possible. As shown 
in the following formula, the input is sent to the autoencoder 
and reconstructed, the encoder by the function f and the 
decoder by the function g: 

ℎሺ𝑥ሻ ൌ 𝑓ሺ𝑤ଵ𝑥 ൅ 𝑏ଵሻ 
𝑜ሺ𝑥ሻ ൌ 𝑔ሺ𝑤ଶℎሺ𝑥ሻ ൅ 𝑏ଶሻ 

Where x is the input; w1 and w2 are the weight matrices of 
the input-output layers and the hidden layers, respectively; 
and b1 and b2 are the bias corresponding to each stage. 

The autoencoder structure is clear and easy to understand, 
suitable for different types of data, and many powerful 
variants are derived. However, abnormalities in the training 

data may bias the learned feature representation. Moreover, 
the objective function of data reconstruction is mainly aimed 
at dimension reduction and data compression, not specifically 
for anomaly detection. This causes the learned feature 
representation tends to generalize latent patterns and is not 
optimized for anomaly detection. 

4.3 Deep Anomaly Detection Model Based on 
LSTM 

As a variant of recurrent neural network (RNN), LSTM 
inherits the ability of RNN to process time series data, which 
can make use of historical data for predict, while overcoming 
the problems of short-term memory and gradient 
disappearance of RNN. Through its unique memory module, 
LSTM is able to learn and retain long-term dependent 
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information, thus enabling the model to perform well when 
processing time-series data. Recently, models based on 
LSTM models and their variants have been widely used in 
various research fields, solving many problems that are 
difficult to overcome by traditional AI algorithms.  

For a given time series input xt, LSTM jointly controls its 
unit state ct and output ht by forgetting the gate, input gate and 
output gate: 

𝑓௧ ൌ 𝜎ሺ𝑊௫௙ ∙ 𝑥௧ ൅ 𝑊௛௙ ∙ ℎ௧ିଵ ൅ 𝑏௙ሻ 
𝑖௧ ൌ 𝜎ሺ𝑊௫௜ ∙ 𝑥௜ ൅ 𝑊௛௜ ∙ ℎ௧ିଵ ൅ 𝑏௜ሻ 

𝑜௧ ൌ 𝜎ሺ𝑊௫௢ ∙ 𝑥௧ ൅ 𝑊௛௢ ∙ ℎ௧ିଵ ൅ 𝑏௢ሻ 

𝑐௧ ൌ 𝑓௧⨂𝑐௧ିଵ ൅ 𝑖௧⨂𝑡𝑎𝑛ℎሺ𝑊௫௖ ∙ 𝑥௧ ൅ 𝑊௛௖ ∙ ℎ௧ିଵ
൅ 𝑏௖ሻ 

ℎ௧ ൌ 𝑜௧⨂𝑡𝑎𝑛ℎሺ𝑐௧ሻ 
Where W and b represent the weight matrix and the bias 

vector, respectively. The forgetting gate is responsible for 
discarding the useless information existing in the past cell 
state of the LSTM, retaining the information added to the 
current cell state of the LSTM, and determining the 
information output. Due to the presence of these gates, LSTM 
can more easily simulate long-term change patterns in time 
series. 
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Figure 3. Structural diagram of the LSTM cells 

 

LSTM network model of time series in the study of various 
time series, which can learn adaptively from a large number 
of normal samples and realize real-time anomaly detection. 
There are also some deficiencies, including high 
computational costs, overfitting risks, complex parameter 
adjustments, and insufficient sensitivity to some abnormal 
types, which may affect their performance and efficiency in 
practical applications. 

4.4 Deep Anomaly Detection Model Based on 
GAN 

Generating Generative Adversarial Network (GAN) is 
mainly composed of the generator and the discriminator, in 
which the discriminator is responsible for the global judgment, 
and the generator focuses on the generation of local details. 
The goal of the generator is to maximize capturing the 
characteristics of the training sample to generate realistic 
samples sufficient to fool the discriminator. The purpose of 
the discriminator is to compare the two, to distinguish the 
authenticity of the input data as much as possible, and to 
narrow the deviation between the generated sample and the 
real sample. 

 

真实数据x

随机噪声z 生成器

判别器

G（z）

判别真伪

 
Figure 3. GAN structure diagram 

 

In the training process, while the generator improves the 
falsification ability, the discriminator also improves the 
discrimination ability. The confrontation between the 
generator and the discriminator forms a dynamic game 
process. Nash equilibrium is reached when the generator can 
generate data that the discriminant has difficulty 
distinguishing between true and false. The GAN optimization 
objective is to maximize discriminant parameters, while 
minimizing generator parameters. The objective function 
formula is as follows: 

𝑀𝑖𝑛ீ𝑀𝑎𝑥஽𝑉ሺ𝐷, 𝐺ሻ ൌ 𝐸௫~௉೏ೌ೟ೌሺ௫ሻሾ𝑙𝑜𝑔𝐷ሺ𝑥ሻሿ
൅ 𝐸௫~௉೥ሺ௭ሻሾ𝑙𝑜𝑔ሺ1 െ 𝐷ሺ𝐺ሺ𝑧ሻሻሿ 

Where z represents the random noise of the input, Pz (z) 
represents the distribution of the generated network, x 
represents the real data, and Pdata (x) represents the 
distribution of the real data. The discriminant will bring 
D(G(z)) to 0, the generator will bring D(G(z)) to 1, and when 
D(G(z)) =0.5, the generated sample can be false, theoretically 
reaching Nash equilibrium.  

GAN has been very mature in image data processing, and 
a large number of existing GAN correlation models and 
theories provide a theoretical basis for anomaly detection. 
However, there are still some defects in GAN-based 
abnormality detection: the GAN training process may face the 
non-convergence problem, which increases the training 
difficulty; the generator network may be misled when the true 
distribution of the data set is complex or the training data 
contains inaccurate outliers. 
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4.5 Deep Anomaly Detection Model Based on 
CNN 

When processing images, CNN treats the images as two-
dimensional matrices, and gradually extracts and combines 
features through multi-layer convolution operation and 
pooling operation to realize the efficient processing of images. 
In the time series analysis, the time series can be regarded as 
a one-dimensional vector of 1*n. The advantage of applying 
convolutional neural networks in time series prediction is that 
their multi-layer network structure enables massively parallel 
processing. This structure can build a deep learning network, 
improving performance while also saving time. 

5. Experiment 

5.1 Dataset 
To compare the effects of different models in anomaly 

detection applications, this paper selected two public datasets 
to conduct experiments on various models. 

 One of the datasets is the KPI dataset released by the 
AIOPS data competition [26], which consists of multiple KPI 
curves, and the anomaly labels come from several internet 
companies including Sogou, Tencent, and eBay. Most of the 
KPI curves have data points with a 1-minute interval, while 
some have a 5-minute interval. These datasets cover time 
series with different time intervals and a wide range of 
patterns, and are commonly used to evaluate the performance 
of time series anomaly detection. The other dataset comes 
from Huawei's NAIE platform, which is a KPI anomaly 
detection dataset based on Huawei's real business. It includes 
a labeled training set and an unlabeled testing set, and its data 
format is basically consistent with the AIOPS dataset. 

5.2 Evaluation Metrics 
In evaluating model performance, Precision, Recall, F1-

score, and accuracy (Acc) are commonly used metrics, which 
are defined as follows: 

𝐴𝑐𝑐 ൌ
𝑇௣ ൅ 𝑇௡

𝑇௣ ൅ 𝐹௣ ൅ 𝑇௡ ൅ 𝐹௡
 

𝑃 ൌ
𝑇௣

𝑇௣ ൅ 𝐹௣
 

𝑅 ൌ
𝑇௣

𝑇௣ ൅ 𝐹௡
 

𝐹ଵ ൌ 2 ൈ
𝑃𝑅

𝑃 ൅ 𝑅
 

 
Among them, Tp represents the number of instances 

correctly detected as normal and are actually normal, Fp 
represents the number of instances detected as normal but are 
actually abnormal, Tn represents the number of instances 
correctly detected as abnormal and are actually abnormal, and 
Fn represents the number of instances detected as abnormal 
but are actually normal. 

5.3 Experimental Analysis 
The experiment compares the effectiveness of five 

representative deep learning anomaly detection algorithms, 
which are introduced in detail in the text, on time series data. 
To ensure the consistency and comparability of the 
experiment, the evaluation was conducted on two public KPI 
anomaly detection datasets. This ensures the applicability and 
representativeness of the research results, providing a reliable 
basis for technology selection in different application 
scenarios. 

Experiments conducted on the KPI dataset released by the 
AIOPS data competition yielded a comparison of 
performance metrics including precision, recall, F1 score, and 
accuracy, as shown in the following table: 

 

Table 1. Results of Models’ Anomaly Detection Metrics 

Detection Methods Precision Recall F1-score Accuracy 
AE 0.80 0.78 0.85 0.77 

Transformer 0.73 0.80 0.83 0.75 
LSTM 0.87 0.90 0.87 0.86 
GAN 0.85 0.88 0.86 0.83 
CNN 0.82 0.87 0.86 0.85 

 

 
Figure 5. Detection Results of Models on KPI Data 
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On the KPI anomaly detection dataset released by Huawei's 
NAIE platform, only the F1 score performance metric was 
evaluated. It can be observed that different models perform 
relatively well on the AIOPS dataset. 

 

Table 2. The F1-Score of Models on the Huawei Dataset 

Detection Methods HUAWEI 
AE 0.73 

Transformer 0.72 
LSTM 0.74 
GAN 0.73 
CNN 0.69 

 

The experimental results from two datasets indicate that 
LSTM, GAN, and CNN perform well in anomaly detection 
tasks, achieving high scores in evaluation metrics such as 
precision, recall, F1 score, and accuracy. Different types of 
deep learning models have their own focuses in anomaly 
detection tasks. LSTM is effective in capturing complex 
features and long-term dependencies in the data; GAN has an 
advantage in generating deceptive anomaly samples; while 
LSTM and CNN excel in handling the sequential and local 
features of time series data. Additionally, although the 
performance of the five algorithms on Huawei’s KPI dataset 
is slightly inferior, the average F1 score exceeds 0.7. This 
suggests that deep learning-based anomaly detection 
algorithms have good generalization capabilities and can be 
somewhat applied to real-world production environments. 

6. Summary 
Time series anomaly detection has important practical 

value and is a subject that has been studied extensively. In 
actual work, it is often difficult to obtain high-quality labels 
for supervised learning anomaly detection algorithms, so 
unsupervised or semi-supervised deep learning anomaly 
detection algorithms have higher universality and a wider 
range of application scenarios. 
This paper provides a classification overview of existing 
anomaly detection methods and focuses on introducing five 
classic deep learning models. The performance of different 
deep learning time series anomaly detection algorithms was 
evaluated on two public KPI anomaly detection datasets. The 
experimental results show that LSTM, GAN, and CNN 
perform well in the anomaly detection task. Meanwhile, the 
average F1 score of the five deep learning algorithms 
exceeded 0.7, proving that the deep learning-based anomaly 
detection model has good generalization ability. Deep 
learning technology has certain application value in time 
series anomaly detection, but there are also certain limitations, 
such as high training cost, complex model, and insufficient 
sensitivity to certain anomaly types. 
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