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Abstract: In real-time demanding scenarios as autonomous driving, real-time semantic segmentation is becoming more and 
more crucial. BiSeNetV2 has been shown to be an effective model, but its performance in improving speed is limited, especially 
while maintaining high accuracy. Furthermore, feature map detail loss results from combining high-level semantic and detail 
information, which is especially crucial for real-time semantic segmentation tasks. In this paper, an efficient Attention Refined 
Two-Branch Real-Time Semantic Segmentation Network (ARTRNet) is designed to alleviate the above challenges. Specifically, 
the whole network adopts a two-branch structure: a spatial detail branch and a lightweight dense connectivity context refinement 
branch, and the lightweight dense connectivity context refinement branch is composed of a novel downsampling module (DSM) 
and a lightweight dense feature module, which achieves high efficiency in terms of reduced computational cost and model size. 
In addition, the attention vector of each feature map is computed by residual linking of the Attention Refinement Module (ARM) 
to highlight the features. A low-resolution context aggregation module (LRCAM) consisting of lightweight Ghost modules is 
also proposed to enhance the spatial information processing capability of the lightweight densely connected context refinement 
branch. In the final fusion stage, the Deformed Convolutional Attention Refinement Fusion Module (DCARFM) is proposed, 
which can enhance the feature expression of the branch and improve the final segmentation results by performing the attention 
refinement operation on the dual branches separately. Finally, experiments on Cityscape and CamVid datasets show that 
ARTRNet achieves a good balance between segmentation accuracy and inference speed. On the Cityscapes dataset, we achieved 
75.7% mIoU at 132 FPS and 76.9% mIoU at 96 FPS on higher resolution images. 
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1. Introduction 
Semantic segmentation techniques offer significant 

potential and opportunities for several key application areas. 
It aims to achieve accurate classification and segmentation of 
images by dividing and labelling pixels within an image by 
setting rules. It has been widely used in augmented reality [1], 
self-driving cars[2] , medical image analysis[3], remote 
sensing image interpretation[4], and security surveillance[5]. 
Deep convolutional neural networks have advanced 
significantly in semantic segmentation tasks in recent years, 
progressively taking the lead as the industry standard 
technology. The development of semantic segmentation 
algorithms[6-8] has been facilitated since Fully 
Convolutional Networks (FCN)[9] was proposed. These 
algorithms not only improve the accuracy of segmentation, 
but also preserve important details of the image. With the 
continuous development of the mobile terminal industry, 
many real-time semantic segmentation models [10-14] have 
emerged to satisfy the needs of the industry. Despite the 
success of these state-of-the-art models in improving 
segmentation quality, they also bring higher computational 
demands, which is a major challenge for real-time application 
scenarios, such as autonomous driving[2] and mechanically 
assisted surgery[15], as these scenarios require models that 
are both highly accurate and have to satisfy the speed 
requirements of real-time processing. 

In order to adapt to the demand for real-time interactive 
performance in these domains, a large number of researchers 
have developed semantic segmentation models featuring 
fewer parameters and rapid reasoning capabilities[16-18]. 
These models fall into two main categories: one is the single-
branch encoder-decoder architecture, whose representative 

studies [19-20] follow the line of development since FCN. 
The alternative category encompasses multi-branch 
architectures [16-17] that are precisely tailored to address the 
specific requirements of real-time semantic segmentation. 
The main difference between the two categories is reflected 
in their approach to multiscale semantic features. Encoder-
decoder architectures typically capture the semantic 
information of an image through layer-by-layer 
downsampling and feature fusion techniques, and this process 
is usually done in a single processing path. In contrast, multi-
branch architectures offer a distinct viewpoint, advocating 
that spatial detail information and high-level semantic 
information can be independently extracted to capture the 
multi-scale features of an image more effectively. BiSeNetV2 
[18], a two-branch network, has become a prime example in 
the field of real-time semantic segmentation due to its 
excellent performance. Compared with the traditional single-
branch structure, the two-branch structure not only performs 
better in boundary and small target segmentation, but also 
achieves a significant improvement in inference speed. In 
most two-branch networks, features are extracted 
independently on paths with different resolutions in order to 
speed up downsampling and reduce the cost of memory 
access, which usually requires the network to perform 
complex feature fusion operations at a later stage. In addition, 
some networks, including BiSeNetV2, still rely on hand-
designed lightweight backbones, which limits their 
performance upper bound to some extent. 

The study introduces a novel, dual-branch architecture for 
real-time processing, designated as the ARTRNet. The aim is 
to improve segmentation accuracy, structure interpretability, 
and performance that can compete with existing methods. The 
specific structure is shown in Figure 1, ARTRNet adopts a 
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coder-decoder architecture. The entire network uses a dual 
branching structure: a spatial detail branch and a lightweight 
densely connected contextual refinement branch, which 
achieves high efficiency with reduced computational cost and 
model size. During the final fusion stage, the feature 
representation of each branch can be enhanced by 
independently applying the attention refinement operation to 
the dual branches, and at the same time, it can replace some 
complex attention computations. 

Our main contributions can be outlined as follows: 
(1) We propose a lightweight dense connectivity context 

refinement branch consisting of a novel DownSampling 
Module (DSM) and a lightweight dense feature module, 
which achieves high efficiency with reduced computational 
cost and model size. 

(2) We propose an Attention Refinement Module (ARM). 
to compute the attention vector of each feature map as a way 
to highlight features. We also propose a Low Resolution 
Context Aggregation Module (LRCAM) consisting of 
lightweight Ghost modules to enhance the spatial information 
processing capability of lightweight densely connected 
context refinement branches. 

(3) We propose a Deformed Convolutional Attention 
Refinement Fusion Module (DCARFM), which is able to 
enhance the feature expression of the branch by performing 
separate attention refinement operations on the dual branches 
in the final fusion stage. 

(4) Based on the above efforts, we construct a Real-Time 
Two-Branch Segmentation Network architecture called 
ARTRNet and achieved competitive results on standard 
benchmark tests. 

2. Related Work 

2.1. Single-Branch Real-Time Semantic 
Segmentation 

Conventional semantic segmentation approaches primarily 
rely on established techniques and methods in computer 
vision and image processing, and usually use techniques of 
threshold segmentation[21], region segmentation[22], image 
features[23] or graph models[24] for pixel-level classification 
to achieve semantic segmentation. In recent years, within the 
field of real-time semantic segmentation research, some 
approaches have adopted the single-branch encoder-decoder 
architecture[9, 25-26] as their core framework. These 
methods capture the semantic features of an image through 
layer-by-layer downsampling and feature fusion techniques, 
while capturing both low-level detail information and high-
level semantic information. ESPNet[19] enhances 
segmentation performance by capturing multi-scale feature 
information using dilated convolution at various scales. 
Dilated convolution enables the network to cover a larger 
receptive field with fewer parameters and less computation, 
which is very efficient when processing high-resolution 
images. EDANet[20] employs asymmetric convolution, 
dilated convolution, and dense concatenation to reduce 
parameters and computation, maintaining high efficiency and 
accuracy. This network is ideal for high-speed processing 
applications, such as autonomous driving, and is able to 
achieve fast segmentation performance while maintaining 
high-resolution inputs. DFANet[27] efficiently combines 
feature information from different layers through deep feature 
aggregation techniques to improve segmentation accuracy. 
The lightweight architecture design of the network allows it 

to handle high-resolution images swiftly, meeting real-time 
application demands effectively. 

2.2. Two-Branch Real-Time Semantic 
Segmentation 

The two-branch architecture effectively preserves the high-
resolution details of an image by processing features at 
different scales independently compared to the single-branch 
architecture. The BiSeNet series[17-18] is a good example in 
this regard. BiSeNet[17] introduces parallel spatial and 
contextual paths as well as feature fusion techniques, which 
achieves the fast acquisition of deep semantic information 
while preserving the image details. It significantly improves 
the performance of real-time semantic segmentation. 
BiSeNetV2[18] simplifies and deepens the network structure, 
improves the operation efficiency, introduces a bilateral 
bootstrap aggregation layer, and combines details and 
semantic features more effectively. However, since 
BiSeNetV2 adopts a fast downsampling strategy, some 
important detail information may be lost to some extent, 
which may affect the accuracy of segmentation. To solve this 
problem, Fast-SCNN[13] and DDRNet[28] adopt a single-
branch architecture with a shared backbone to increase 
multiple interactions by sharing parameters early in the 
network. 

2.3. Feature Fusion Module 
In semantic segmentation network architecture, the feature 

fusion module plays a critical role in integrating features from 
multiple levels to enhance the model's capability to 
understand both global context and local details of scenes. 
This integration boosts accuracy and segmentation 
effectiveness. In addition to the basic element-by-element 
addition or feature splicing operations, current feature fusion 
techniques are increasingly implemented using the attention 
mechanism. The attention mechanism is equivalent to an 
intelligent information filtering process, which can 
dynamically focus on the key information in the image 
according to the task requirements to optimise the feature 
representation. DANet[29] employs a dual attention 
mechanism to enhance feature identification by guiding 
attention across spatial and channel dimensions, thereby 
boosting segmentation accuracy. CCNet[30] enhances the 
feature representation through a contrast compression module 
to enhance feature representation, utilising contrast learning 
to improve feature discrimination and reducing computation 
through compression operations to achieve more efficient 
real-time semantic segmentation performance. 

3. Our Proposed Method 
In this section, we begin by describing the architecture of 

the proposed Attention Refined Two-Branch Real-Time 
Semantic Segmentation Network (ARTRNet). Subsequently, 
we elaborate on the design specifics of its key components: 
the Lightweight Densely-Connected Context Refined Branch 
and the Deformed Convolutional Attention Refined Fusion 
Module (DCARFM). 

3.1. Attention-Refined Two-Branch Real-Time 
Semantic Segmentation 
Networks(ARTRNet) 

In this section, the ARTRNet network architecture is 
described in detail. The overall network architecture is shown 
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in Figure 1. The network architecture comprises two branches: 
the spatial detail branch and the lightweight densely-
connected context refinement branch. These branches are 
responsible for extracting low-level fine-grained information 
and deep semantic information, respectively. The spatial 
detail branch, characterized by wide channels and shallow 
layers, sufficiently captures spatial information. Inspired by 
the detail branch of BiSeNetV2 [18], our own high-resolution 
branch is designed. It uses three convolutional layers 
consisting of 3×3 convolutions for channel expansion, each 

consisting of an integrated module of 3×3 convolutions, 
batch normalisation and activation functions, and maximum 
pooling after each layer to quickly downsample the input 
image to a scale of 1/8. The spatial detail branch is only the 
processing of local image details, which cannot take up too 
much computational resources, so only the resolution 
reduction operation is performed in this process, while 
preserving detailed object edge information, focusing the 
main feature extraction capability on the lightweight densely 
connected contextual refinement branch. 
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Figure 1. The structural diagram of Attention-Refined Two-Branch Real-Time Semantic Segmentation Networks (ARTRNet). 

 
The basic construction of the lightweight dense connection 

context refinement branch mainly consists of a lightweight 
dense feature module consisting of a DownSampling Module 
(DSM) and a lightweight Ghost module[31], and the specific 
structure of the DSM module and the Ghost module is shown 
in Figure 2. Specifically, on the lightweight dense 
connectivity context refinement branch firstly goes through 
three stages, DSM-1, DSM-2 and DSM-3, which rapidly 
downsample the feature map to 1/8 of the original map while 
widening the number of channels, and after that, it will enter 
into the dense feature module-1 consisting of 5 Ghost 
modules, and after that, after going through one DSM-4 
module for downsampling, it enters into the Dense Feature 
Module-2 consisting of 7 Ghost modules, and finally the 
sense field is expanded by a context embedding block to 
capture the high-level semantics, and the feature map is 
downsampled to 1/32. The features of Dense Feature Module-
1 are selected to be output to the Attention Refinement 
Module (ARM) after downsampling the feature map to 1/16. 
The ARM module calculates feature map weights using 
pooling and 1×1 convolution, which are then multiplied with 
the input feature maps to compute channel attention. The 
specific structure is shown in Figure 2. The 1/32 feature maps 
from the context embedding block are up-sampled and 
operated and then summed with the feature maps passing 
through the ARM and passed into the Low Resolution 
Context Aggregation Module (LRCAM) consisting of the 
lightweight Ghost module, and outputs the final result of the 
semantic segmentation. In the final fusion stage, Deformed 
Convolutional Attention Refinement Fusion Module 
(DCARFM) is proposed, which can enhance the feature 
expression of the branch by cross-fertilising the dual branches 
with the attention refinement operation respectively, and at 
the same time, it can replace some complex attention 

computations to reduce the contextual differences between 
the high-level semantic information and the underlying 
spatial detail information. 

3.2. Lightweight Dense Connection Context 
Refinement Branch 

The spatial detail branch combines convolutional and 
nonlinear mapping layers to capture detailed information 
from local regions. Typical semantic branching focuses on 
delivering deep semantic information to distinguish between 
various object types. This process involves a more intricate 
branch and is also more time-intensive. To accelerate 
segmentation, a lightweight densely connected contextual 
refinement branch is employed to lower the computational 
cost of semantic branching. This chapter adopts a similar 
connectivity strategy as EDANet[20], incorporating a new 
DSM module and a dense connection block using the 
lightweight Ghost module within the context branch. Firstly 
three DSM modules perform continuous downsampling to 1/8 
of the original image, three paths will be divided in each DSM 
module, two paths first go through a 3×3 convolution for 2-
fold downsampling, and the other path undergoes maximum 
pooling for downsampling, and after that the three paths are 
channel-level summed up and then go through the BN and 
RELU activation functions, and maximum pooling is used 
instead of part of the convolution, which reduces the cost of 
computation. The specific structure is shown in Figure 2. 
After that, it will pass through a dense link block-1 consisting 
of five lightweight Ghost modules, inspired by DenseNet[32], 
which replaces the convolutional blocks in the dense link with 
lightweight Ghost modules with smaller parameter counts and 
faster computation speed. Each Ghost module first undergoes 
a 1×1 convolution, BN and RULU activation functions, and 
after that, after a 3×3 group convolution, BN and RULU 
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activation functions, it outputs the result after channel-level 
summation with the residual link. The specific structure is 

shown in Figure 2.  
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Figure 2. Architectural details of the DSM, GM and ARM. 

 
After that, it passes through a DSM module to downsample 

the feature map to 1/16, and then passes through a dense 
connection block-2 composed of seven lightweight Ghost 
modules and then passes into the context embedding block to 
get 1/32 feature map, and the feature map from the dense 
connection block-1 passes through the ARM module for 
attention refinement operation, and the ARM module first 
passes through a convolution block composed of convolution, 
BN and RULU activation function, and then passes through a 
convolution block composed of 3×3 group convolution, BN 
and RULU activation function, and then passes through the 
residual link to output the result after channel-level 
summation. The ARM module first passes through a 
convolution block consisting of convolution, BN and RULU 
activation functions, after which it performs average pooling 
and maximum pooling operations for pixel-level summation, 
and then passes through a 1×1 convolution, BN and Sigmiod 
activation functions, and then performs pixel-level 
multiplication with residual connections after the convolution 
block to output the result.Following the ARM module 
immediately after upsampling to 1/16 of the original image, 
and after the context embedding block after the up-sampling 

of the feature map for pixel-level summation and input to the 
low-resolution context aggregation module, the addition of 
the low-resolution context aggregation module at the end of 
the feature extractor is mainly to enhance the spatial 
information processing ability of lightweight dense 
connection context refinement branch anywhere. In this way, 
the network is able to process images with complex spatial 
structures more efficiently, while allowing better articulation 
with spatial detail branches. Mimicking pyramid pooling 
without adding parameters, the convolution is substituted 
with a lightweight Ghost module, and the whole module is 
divided into five layers, with only one Ghost module in the 
first layer to get the feature map F1, two consecutive Ghost 
modules in the second, third, and fourth layers to get the 
feature maps F2, F3, and F4, and the fifth layer to first 
perform an average pooling operation and then enter a Ghost 
module to obtain the feature map F5. After that, F5 and F4 are 
pixel-level summed to obtain F44, and so on, to obtain the 
feature maps F33, F22, and F11, and finally the results are 
output by channel-level summing of F11, F22, F33, F44, and 
F5, and residual connections from the input image. The 
detailed structure is illustrated in Figure 3. 
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Figure 3. Architectural details of the LRCAM. 
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3.3. Deformed Convolutional Attention 
Refinement Fusion Module(DCARFM) 

Low-resolution features contain rich semantic information, 
while high-resolution features better preserve spatial details. 
To effectively integrate the deep semantic information from 
the lightweight densely connected contextual refinement 
branch with the spatial detail information from the spatial 
detail branch, we draw inspiration from D-LKA Attention[33] 
to propose a Deformed Convolutional Attention Refinement 
Fusion Module. This module primarily consists of a 
Deformed Convolutional Attention Refinement Module. The 
detailed structure is depicted in Figure \ref{fig4_}. Firstly, in 
the fusion stage, a cross-fertilisation approach is adopted, 
specifically, the output results of the lightweight dense 
connectivity context refinement branch are first up-sampled 

and the results of the spatial detail branch are channel-level 
summed and then passed into the Deformed Convolutional 
Attention Refinement Module (DCARM) to carry out the 
process. DCARM is used for refinement processing, 
primarily filtering the features from the spatial detail branch 
after summation to emphasize its feature representation. After 
that, the spatial detail branch is downsampled and channel-
level summed with the lightweight dense connection context 
refinement branch, and then passed into the deformed 
convolutional attention refinement module, where the 
refinement process is mainly to filter the features of the 
lightweight dense connection context refinement branch after 
summing, and highlight the feature representation of the 
lightweight dense connection context refinement branch. The 
results from these two refinements are fed into the feature 
fusion module, which then produces the final output. 
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Figure 4. Architectural details of the DCARFM. 

 

4. Experiments 
In this section, we will evaluate the proposed ARTRNet on 

two datasets: Cityscapes[34] and CamVid[35]. We will 
compare its performance with other notable real-time 
semantic segmentation methods to demonstrate its 
advantages. In the following subsections, we will outline the 
implementation details of the datasets and training parameters. 
Next, we analyze the effectiveness of the Attention Refined 
Two-Branch Real-Time Semantic Segmentation network 
structure and conduct thorough ablation experiments on the 
Cityscapes dataset to validate each module's efficacy in our 
method. Finally, we compare our final accuracy and speed 
(FPS) results with other algorithms across various 
benchmarks. 

4.1. Datasets and Evaluation Metrics 
Cityscapes: The Cityscapes dataset[34] is a widely utilized 

large-scale dataset for semantic segmentation of urban scenes, 
serving as a prominent benchmark in computer vision 
research and algorithm evaluation. The dataset consists of 
high-resolution images from 50 cities in Germany, covering 
different weather conditions, different seasons and various 
urban scenes. The images contain rich semantic information 
such as roads, pedestrians, vehicles, buildings, etc., making 

them ideal for deep learning models for semantic 
segmentation studies in urban scenes. The Cityscapes dataset 
consists of high-resolution images, each meticulously 
annotated at the pixel level with labels covering 30 different 
categories. The dataset can be divided into two subsets with 
two levels of annotation: fine and coarse. The finely annotated 
Cityscapes dataset includes 5000 high-resolution images, 
with 2975 images allocated for training, 500 for validation, 
and 1525 for testing (annotations for the test set are available 
on the official website for evaluation). The roughly labelled 
dataset, on the other hand, contains 20,000 images. We 
usually use the finely labelled dataset, the resolution of these 
images is up to 2048×1024, which provides detailed and rich 
scene information for research and development. 

Camvid: The CamVid dataset[35] is a specialized dataset 
for semantic segmentation tasks in road scenes, developed by 
the Computer Vision Group at the University of Cambridge. 
It serves as a valuable resource for research in areas like 
autonomous driving and traffic monitoring. It is the first video 
collection to integrate semantic labelling of target categories. 
The dataset consists of 32 semantic labels and was originally 
sourced from video sequences of the Cambridge city area, 
with a total of 701 image sequences containing hundreds to 
thousands of frames each, which were subsequently generated 
by manually selecting more than 700 images to be annotated. 
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The CamVid dataset comprises 701 images depicting urban 
streetscapes, with 367 images used for training, 101 for 
validation, and the remaining 233 for testing. The remaining 
233 images were used as a test set. This division helps 
researchers to train, validate and evaluate the algorithm to 
better understand its performance in different scenarios. The 
images have a resolution of 960 × 720 and contain 11 
commonly used semantic labels. 

4.2. Implementation Details 
Training Strategy: During training, we utilized the Adam 

optimizer along with a polynomial decay learning rate 
scheduler and a warm-up strategy. For training, a single RTX 
3090 GPU is utilised.Considering the need to process images 
with different resolutions, the input resolutions are adjusted 
to 512×1024 and 768×1536, the batchSize is adjusted to 20 
and 10, the maximum number of loops are both set to 140k, 
and the initial learning rate is set to 1e-3 on Cityscapes 
dataset.For data enhancement aspect, random scaling, random 
fill cropping, and random horizontal flipping techniques are 
used. On the CamVid dataset, the input resolution is adjusted 
to 720 × 960, the batchSize is adjusted to 16, and the 
maximum number of loops is 80k. For data enhancement, 
only random cropping is used. In addition, when training on 
the CamVid dataset, the trained pre-training weights on the 
Cityscapes dataset are added. In the inference phase, this 
experiment does not use any acceleration trick over strategy 
and uses the test code provided by the PaddlePaddle deep 
learning framework for speedup. In order to ensure the 
effectiveness of the model in practical applications, images 
with different resolutions were used for inference, and the 
processing speed and segmentation accuracy were 
comprehensively evaluated. Ultimately, the standard metric 
of concurrent average intersection and frames per second 
were used to compare the performance of different models. 

Inference settings: During inference, without employing 
acceleration techniques such as sliding window evaluation or 
tension acceleration strategies, for the Cityscapes dataset, we 
use 768×1536 and 512×1024 resolutions for inference. For 
the CamVid dataset, inference was performed using a 
resolution of 960×720. We used NVIDIA GTX 3090 GPU 
and performed all inference experiments on CUDA 11.2 and 
CUDNN 8.1 environments. We employed the standard 

metrics of mean Intersection over Union (mIoU) for 
segmentation accuracy comparisons and Frames Per Second 
(FPS) for inference speed comparisons. 

4.3. Experiments on Cityscapes 
4.3.1. Ablation study 

In this section, ablation experiments are carried out on each 
component in the lightweight densely connected contextual 
refinement branch of ARTRNet as well as on the deformed 
convolutional attention refinement fusion module. The 
method of control variables in physical experiments is taken 
and experiments are conducted module by module to see their 
effects on the experimental results, thus proving that the 
proposed model achieves significant improvements. All 
ablation experiments were conducted on the Cityscapes 
dataset. 

In order to verify the effectiveness of the downsampling 
module (DSM), the experiments will be conducted on the 
basis of input images with resolutions of 512×1024 and 768
×1536, respectively. From Table 1(a), it can be seen that 
when the attention refinement module is used for both by 
default, the mIoU of the model is not too good at 512×1024 
resolution when normal convolution is used. Whereas when 
the DSM module is used, it can be seen that the models all 
have better predictions with a slightly improved mIoU of 73.2% 
than when the DSM module is not used. This could mean that 
the DSM provides a better representation of the features 
during the downsampling process. A similar trend is observed 
at a higher resolution of 768×1536. With ARM, the mIoU of 
ARTRNet with DSM only is 73.2% at 512×1024 resolution, 
while at 768×1536 resolution, the mIoU improves to 74.2%. 
This further confirms the effectiveness of DSM in processing 
higher resolution images. Next, in Table 1(b), the effect of 
ARM on ARTRNet performance at different resolutions is 
explored. Using DSM by default for all, the mIoU of 
ARTRNet with ARM is 73.2% at 512×1024 resolution. 
However, at 768×1536 resolution, the mIoU of ARTRNet 
using ARM reaches 74.2%. This shows that ARM plays an 
equally important role in attention refinement, especially 
when dealing with higher resolution images. The 
experimental results in this section highlight the effectiveness 
of DSM and ARM in ARTRNet. 

 

Table 1. Comparison of DAM and ARM in ARTRNet on the Cityscapes validation set. 

Model Resolution None DSM None ARM mIoU 
(a) DSM 
ARTRNet 512×1024 √   √ 72.3 
ARTRNet 512×1024  √  √ 73.2 
ARTRNet 768×1536 √   √ 72.8 
ARTRNet 768×1536  √  √ 74.2 
(b) ARM 
ARTRNet 512×1024  √ √  72.6 
ARTRNet 512×1024  √  √ 73.2 
ARTRNet 768×1536  √ √  72.9 
ARTRNet 768×1536  √  √ 74.2 

 

To assess the impact of the Low Resolution Context 
Aggregation Module (LRCAM) and Deformed 
Convolutional Attention Refinement Fusion Module 
(DCARFM) on semantic segmentation performance across 
various resolutions. In this subsection, ablation experiments 
are performed on the Low Resolution Context Aggregation 

Module (LRCAM) and Deformed Convolutional Attention 
Refinement Fusion Module (DCARFM). Using the DSM 
module and ARM module by default, Table 2(c) demonstrates 
the experimental results of the low-resolution context 
aggregation module (LRCAM), from which it can be seen that 
the model with the introduction of the LRCAM improves the 
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mIoU from 74.5% to 75.7% compared to the model without 
the LRCAM at a resolution of 512 × 1024. This result 
indicates that at lower resolutions, LRCAM can effectively 
aggregate contextual information, thus improving 
segmentation accuracy. At a higher resolution of 768×1536, 
LRCAM also demonstrates its advantages, resulting in an 
increase in mIoU from 75.3% to 76.9%. This further confirms 
the effectiveness of LRCAM in capturing richer contextual 
information. Table 2(d) demonstrates the experimental results 

of the Deformed Convolutional Attention Refinement Fusion 
Module (DCARFM), from which it can be seen that the 
introduction of the DCARFM improves the mIoU of the 
model from 74.4% to 75.7% at 512 × 1024 resolution. 
However, at 768×1536 resolution, the model with DCARFM 
outperforms the model without DCARFM by 76.9% mIoU. 
The experimental results confirm the effectiveness of 
LRCAM and DCARFM in ARTRNet. 

 
Table 2. Comparison of ablation experiments of LRCAM and DCARFM in ARTRNet on Cityscapes validation set. 

Model Resolution None LRCAM None DCARFM mIoU 
(a) LRCAM 

ARTRNet 512×1024 √   √ 74.5 
ARTRNet 512×1024  √  √ 75.7 
ARTRNet 768×1536 √   √ 75.3 
ARTRNet 768×1536  √  √ 76.9 

(b) DCARFM 
ARTRNet 512×1024  √ √  74.4 
ARTRNet 512×1024  √  √ 75.7 
ARTRNet 768×1536  √ √  75.4 
ARTRNet 768×1536  √  √ 76.9 

 

4.3.2. Comparison with SOTA Methods 
In this subsection, we present performance results of 

ARTRNet on the Cityscapes and CamVid datasets, followed 
by comparisons with other state-of-the-art real-time semantic 
segmentation methods to validate its effectiveness. The 
evaluation is conducted using a resolution of 768×1536 for 
Cityscapes and 720 × 960 for CamVid. The models are 
assessed based on four key metrics: Floating-Point 
Operations per Second (FLOPs), number of parameters, mean 
Intersection over Union (mIoU), and inference speed (FPS). 
A comprehensive analysis of these metrics is provided below. 

Table 3 compares ARTRNet with nine other models on the 
Cityscapes dataset. Special attention is given to the 
performance comparison between ARTRNet and BiSeNetV2. 
BiSeNetV2, a lightweight network, is designed to prioritize 
fast inference speed without compromising on accuracy. 
Without the use of a pre-trained backbone network, 
BiSeNetV2 achieves 73.4% mIoU and 156 FPS at 512×1024 
resolution without using accelerated processing, which shows 
that it is competitive in real-time applications. In comparison, 
ARTRNet achieved 76.9% mIoU and 96 FPS at a higher 
resolution of 768×1536. This result suggests that ARTRNet 
has improved in accuracy despite being slightly slower than 
BiSeNetV2. This enhancement may be attributed to the 

specific structure and optimisation strategies that ARTRNet 
employs in its network design, which help to capture finer 
image details and thus improve the accuracy of segmentation. 
Table 3 shows that most of the models are pre-trained on 
ImageNet, which is a time-consuming process but can be 
traded off for a relatively high segmentation accuracy. In 
contrast, the training of the models in this chapter chooses to 
start from zero. In addition, due to the limitation of GPU 
memory, in order to be able to make the training gradient 
more accurate, the ARTRNet model in this section is loaded 
with the pre-training weights of ARTRNet with a resolution 
of 512×1024 size on top of the resolution of 768×1536 size. 
As can be seen from Table 3, the ARTRNet in this section 
achieves a balance between accuracy and speed. In terms of 
mIoU, the method in this section is significantly better than 
other more advanced methods such as BiseNetV2[18]. In 
Table 3, this paper uses no to denote that the method has no 
backbone. backbone denotes in the backbone model. "*" 
indicates that the inference speed, GFLOPs and parameters of 
the model are tested and provided on the platform in this 
section. If "Ɨ" the method is labelled with, the accelerated 
processing is performed using TensorRT. "-" indicates that the 
methods do not report the corresponding results.  

 

Table 3. Comparison with other methods on the Cityscapes dataset. 
Model Backbone Resolution GFLOPs Params mIoU FPS 

DFANet[27] 43-layer CNN 1024×1024 3.4 7.8M 71.3 100 
SwiftNet[37] ResNet18 1024×2048 104.0 11.8M 75.5 39.9 
LRNNet[38] 55-layer CNN 512×1024 8.58 0.68M 72.2 71 
RTHP[39] MobileNetV2 448×896 49.5 6.2M 73.6 51 

PP-LiteSeg-T1[40] STDC1 512×1024 - - 73.1 273.6 
PP-LiteSeg-T2[40] STDC1 768×1536 - - 76.0 143.6 

BiSeNetV1[17] Xception 39 768×1536 14.8 5.8M 69.0 105.8 
BiSeNetV1[17] ResNet18 768×1536 55.3 49M 74.8 65.5 

STDC1-Seg50*†[36] STDC1 512×1024 24.8 8.3M 72.2 206.9 
STDC2-Seg50*†[36] STDC2 512×1024 38.0 12.3M 74.2 156.6 
STDC1-Seg75*†[36] STDC1 768×1536 55.9 8.3M 74.5 140.7 
STDC2-Seg75*†[36] STDC2 768×1536 85.6 12.3M 77.0 106.2 

BiSeNetV2†[18] no 512×1024 21.1 - 73.4 156 
BiSeNetV2-L†[18] no 512×1024 118.5 - 75.8 47.3 

ARTRNet no 512×1024 19 6.6M 75.7 132 
ARTRNet no 768×1536 38.6 6.6M 76.9 96 
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4.3.3. Experiments on CamVid 
To further validate the generalization of ARTRNet, 

experiments were also conducted on the CamVid dataset with 
an input resolution of 720×960 using the same configuration. 
The specific results are detailed in Table 4. ARTRNet 
performs the best, achieving 76.5% mIoU and 110.4 FPS, 
which is higher than that of STDC2-Seg[36] but slightly 

lower than that of the accelerated BiSeNetV2[18]. Meanwhile, 
ARTRNet achieves a good balance of speed and accuracy, 
which further proves the superior performance of the method. 
In Table 4, this section uses "*" to denote the pre-training of 
the model loaded with ARTRNet under 3/4 graph. If the 
method is labelled with "Ɨ", the accelerated processing was 
performed using TensorRT. 

 
Table 4. Comparison with other methods on the CamVid dataset. 

Model Backbone GPU mIoU FPS 
ENet[41] 43-layer CNN TitanX 51.3 61.2 
ICNet[16] PSPNet50 TitanX 67.1 27.8 

DFANet A[27] Xception A TitanX 64.7 120 
DFANet B[27] Xception B TitanX 59.3 160 
SwiftNet[37] ResNet18 GTX 1080Ti 72.6 - 

BiSeNetV1[17] Xception39 GTX 1080Ti 65.6 175 
BiSeNetV1[17] ResNet18 GTX 1080Ti 68.7 116.3 

STDC1†[36] STDC1 GTX 1080Ti 73.0 197.6 
STDC2†[36] STDC2 GTX 1080Ti 73.9 152.2 

BiSeNetV2[18] no GTX 1080Ti 72.4 124.5 
BiSeNetV2-L[18] no GTX 1080Ti 73.2 32.7 
BiSeNetV2*†[18] no GTX 1080Ti 76.7 124.5 

ARTRNet no RTX 3090 76.5 110.4 
 

4.3.4. Visualization Experiments on Cityscapes 
To visually highlight the significant advantages of our 

proposed method, Figure 5 compares our approach with 
several other methods on the Cityscapes dataset. Through 

these comparison plots, it can be clearly observed that our 
method is the closest to the real-world scenarios in terms of 
presenting results, i.e., our method exhibits a superior 
performance in comparison with the three comparable 
methods. 

 

(a)

(c)

(d)

(e)

(b) 

 
Figure 5. Visualisation of segmentation results of BiSeNetV1, BiSeNetV2 and ARTRNet on Cityscape dataset. (a) Input 

image; (b) Ground Truth; (c) BiSeNetV1; (d) BiSeNetV2; (e) ARTRNet. 
 

5. Conclusion 
Real-time semantic segmentation is increasingly crucial in 

demanding scenarios like autonomous driving. However, 

many existing methods prioritize accuracy over speed. 
Although BiSeNetV2 is effective, its speed improvement is 
limited while maintaining high accuracy. Therefore, 
achieving a balanced trade-off between speed and accuracy is 
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a key focus of current research. In this paper, we introduce an 
efficient Attention Refined Two-Branch Real-Time Semantic 
Segmentation Network. We propose lightweight densely 
connected contextual refinement branches to reduce 
computational load and improve speed while ensuring 
accuracy. Additionally, to address the challenge of feature 
map detail loss during branch fusion, we propose the 
Deformed Convolutional Attention Refinement Fusion 
Module. This module refines feature map details through 
deformed convolutional attention refinement operations, 
enhancing the segmentation capability of the model. 
Experimental results on Cityscapes and CamVid datasets 
demonstrate that our proposed ARTRNet achieves a favorable 
balance between segmentation accuracy and inference speed, 
surpassing other representative real-time semantic 
segmentation methods. 
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