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Abstract: In real-time demanding scenarios as autonomous driving, real-time semantic segmentation is becoming more and
more crucial. BiSeNetV?2 has been shown to be an effective model, but its performance in improving speed is limited, especially
while maintaining high accuracy. Furthermore, feature map detail loss results from combining high-level semantic and detail
information, which is especially crucial for real-time semantic segmentation tasks. In this paper, an efficient Attention Refined
Two-Branch Real-Time Semantic Segmentation Network (ARTRNet) is designed to alleviate the above challenges. Specifically,
the whole network adopts a two-branch structure: a spatial detail branch and a lightweight dense connectivity context refinement
branch, and the lightweight dense connectivity context refinement branch is composed of a novel downsampling module (DSM)
and a lightweight dense feature module, which achieves high efficiency in terms of reduced computational cost and model size.
In addition, the attention vector of each feature map is computed by residual linking of the Attention Refinement Module (ARM)
to highlight the features. A low-resolution context aggregation module (LRCAM) consisting of lightweight Ghost modules is
also proposed to enhance the spatial information processing capability of the lightweight densely connected context refinement
branch. In the final fusion stage, the Deformed Convolutional Attention Refinement Fusion Module (DCARFM) is proposed,
which can enhance the feature expression of the branch and improve the final segmentation results by performing the attention
refinement operation on the dual branches separately. Finally, experiments on Cityscape and CamVid datasets show that
ARTRNet achieves a good balance between segmentation accuracy and inference speed. On the Cityscapes dataset, we achieved
75.7% mloU at 132 FPS and 76.9% mloU at 96 FPS on higher resolution images.
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studies [19-20] follow the line of development since FCN.

1. Introduction The alternative category encompasses multi-branch

Semantic segmentation techniques offer significant archi.tectures [16-17] that are prc?cisely tailor.ed to address.the
potential and opportunities for several key application areas. spemﬁc. requirements of real-time semantic _segmentation.
It aims to achieve accurate classification and segmentation of ~ The main difference between the two categories is reflected
images by dividing and labelling pixels within an image by in their approqch to multlscgle semantic features. Encode?—
setting rules. It has been widely used in augmented reality [1], decoder architectures typically capture the semantic
self-driving cars[2] , medical image analysis[3], remote 1nf0rmat10n' of an Image thrgugh layer'-by-layer
sensing image interpretation[4], and security surveillance[5]. Flownsamphng a}nd fgature fusion t.echmques, and this process
Deep convolutional neural networks have advanced is usually done in a single processing path. In contrast, multi-
significantly in semantic segmentation tasks in recent years, branch architectures offer a distinct viewpoint, advocating
progressively taking the lead as the industry standard Fhat spa.tlal detail }nforrnatlon and high-level semantic
technology. The development of semantic segmentation 1nf0rmat10n can be 1ndependently extractf?d to cqpture the
algorithms[6-8] has been facilitated since Fully multi-scale features of an image more effect1v§ly. BlseNetYZ
Convolutional Networks (FCN)[9] was proposed. These [18], a two-branch petwork, has. become a prime example mn
algorithms not only improve the accuracy of segmentation, the field of real-time semantic segmentation due to its
but also preserve important details of the image. With the excellent performance. Compared with the traditional single-
continuous development of the mobile terminal industry, ~ branch structure, the two-branch structure not only performs
many real-time semantic segmentation models [10-14] have bettF:r n boqndgry and small target segmentation, but also
emerged to satisfy the needs of the industry. Despite the achieves a significant improvement in inference speed. In
success of these state-of-the-art models in improving ~ Most two-branch networks, features are extracted
segmentation quality, they also bring higher computational independently on path§ with different resolutions in order to
demands, which is a major challenge for real-time application speed up dpwnsamphng anq reduce the cost of memory
scenarios, such as autonomous driving[2] and mechanically access, which usually requires the network to perform
assisted surgery[15], as these scenarios require models that complex feature fysmn operations at a later stage. In addition,
are both highly accurate and have to satisfy the speed some netwo;ks, lqcludlng BiSeNetV2, SFlﬂ rely on hanq-
requirements of real-time processing. designed lightweight backbones, which limits their

In order to adapt to the demand for real-time interactive performance upper bound to some extent. .
performance in these domains, a large number of researchers Th? study 1ntr9duces a novel, dual-branch archltectur'e f(_)f
have developed semantic segmentation models featuring rea'l-t1me processing, Qe51gnated as the ARTRNet. The aim 1s
fewer parameters and rapid reasoning capabilities[16-18]. to improve segmentation accuracy, structure interpretability,
These models fall into two main categories: one is the single- ~ and performance that can compete with existing methods. The
branch encoder-decoder architecture, whose representative specific structure is shown in Figure 1, ARTRNet adopts a
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coder-decoder architecture. The entire network uses a dual
branching structure: a spatial detail branch and a lightweight
densely connected contextual refinement branch, which
achieves high efficiency with reduced computational cost and
model size. During the final fusion stage, the feature
representation of each branch can be enhanced by
independently applying the attention refinement operation to
the dual branches, and at the same time, it can replace some
complex attention computations.

Our main contributions can be outlined as follows:

(1) We propose a lightweight dense connectivity context
refinement branch consisting of a novel DownSampling
Module (DSM) and a lightweight dense feature module,
which achieves high efficiency with reduced computational
cost and model size.

(2) We propose an Attention Refinement Module (ARM).
to compute the attention vector of each feature map as a way
to highlight features. We also propose a Low Resolution
Context Aggregation Module (LRCAM) consisting of
lightweight Ghost modules to enhance the spatial information
processing capability of lightweight densely connected
context refinement branches.

(3) We propose a Deformed Convolutional Attention
Refinement Fusion Module (DCARFM), which is able to
enhance the feature expression of the branch by performing
separate attention refinement operations on the dual branches
in the final fusion stage.

(4) Based on the above efforts, we construct a Real-Time
Two-Branch Segmentation Network architecture called
ARTRNet and achieved competitive results on standard
benchmark tests.

2. Related Work

2.1. Single-Branch Real-Time Semantic
Segmentation

Conventional semantic segmentation approaches primarily
rely on established techniques and methods in computer
vision and image processing, and usually use techniques of
threshold segmentation[21], region segmentation[22], image
features[23] or graph models[24] for pixel-level classification
to achieve semantic segmentation. In recent years, within the
field of real-time semantic segmentation research, some
approaches have adopted the single-branch encoder-decoder
architecture[9, 25-26] as their core framework. These
methods capture the semantic features of an image through
layer-by-layer downsampling and feature fusion techniques,
while capturing both low-level detail information and high-
level semantic information. ESPNet[19] enhances
segmentation performance by capturing multi-scale feature
information using dilated convolution at various scales.
Dilated convolution enables the network to cover a larger
receptive field with fewer parameters and less computation,
which is very efficient when processing high-resolution
images. EDANet[20] employs asymmetric convolution,
dilated convolution, and dense concatenation to reduce
parameters and computation, maintaining high efficiency and
accuracy. This network is ideal for high-speed processing
applications, such as autonomous driving, and is able to
achieve fast segmentation performance while maintaining
high-resolution inputs. DFANet[27] efficiently combines
feature information from different layers through deep feature
aggregation techniques to improve segmentation accuracy.
The lightweight architecture design of the network allows it
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to handle high-resolution images swiftly, meeting real-time
application demands effectively.

2.2. Two-Branch Real-Time Semantic
Segmentation

The two-branch architecture effectively preserves the high-
resolution details of an image by processing features at
different scales independently compared to the single-branch
architecture. The BiSeNet series[17-18] is a good example in
this regard. BiSeNet[17] introduces parallel spatial and
contextual paths as well as feature fusion techniques, which
achieves the fast acquisition of deep semantic information
while preserving the image details. It significantly improves
the performance of real-time semantic segmentation.
BiSeNetV2[18] simplifies and deepens the network structure,
improves the operation efficiency, introduces a bilateral
bootstrap aggregation layer, and combines details and
semantic features more effectively. However, since
BiSeNetV2 adopts a fast downsampling strategy, some
important detail information may be lost to some extent,
which may affect the accuracy of segmentation. To solve this
problem, Fast-SCNN[13] and DDRNet[28] adopt a single-
branch architecture with a shared backbone to increase
multiple interactions by sharing parameters early in the
network.

2.3. Feature Fusion Module

In semantic segmentation network architecture, the feature
fusion module plays a critical role in integrating features from
multiple levels to enhance the model's capability to
understand both global context and local details of scenes.
This integration boosts accuracy and segmentation
effectiveness. In addition to the basic element-by-element
addition or feature splicing operations, current feature fusion
techniques are increasingly implemented using the attention
mechanism. The attention mechanism is equivalent to an
intelligent information filtering process, which can
dynamically focus on the key information in the image
according to the task requirements to optimise the feature
representation. DANet[29] employs a dual attention
mechanism to enhance feature identification by guiding
attention across spatial and channel dimensions, thereby
boosting segmentation accuracy. CCNet[30] enhances the
feature representation through a contrast compression module
to enhance feature representation, utilising contrast learning
to improve feature discrimination and reducing computation
through compression operations to achieve more efficient
real-time semantic segmentation performance.

3. Our Proposed Method

In this section, we begin by describing the architecture of
the proposed Attention Refined Two-Branch Real-Time
Semantic Segmentation Network (ARTRNet). Subsequently,
we elaborate on the design specifics of its key components:
the Lightweight Densely-Connected Context Refined Branch
and the Deformed Convolutional Attention Refined Fusion
Module (DCARFM).

3.1. Attention-Refined Two-Branch Real-Time
Semantic Segmentation
Networks(ARTRNet)

In this section, the ARTRNet network architecture is
described in detail. The overall network architecture is shown



in Figure 1. The network architecture comprises two branches:

the spatial detail branch and the lightweight densely-
connected context refinement branch. These branches are
responsible for extracting low-level fine-grained information
and deep semantic information, respectively. The spatial
detail branch, characterized by wide channels and shallow
layers, sufficiently captures spatial information. Inspired by
the detail branch of BiSeNetV2 [18], our own high-resolution
branch is designed. It uses three convolutional layers
consisting of 3 X3 convolutions for channel expansion, each

consisting of an integrated module of 3 X 3 convolutions,
batch normalisation and activation functions, and maximum
pooling after each layer to quickly downsample the input
image to a scale of 1/8. The spatial detail branch is only the
processing of local image details, which cannot take up too
much computational resources, so only the resolution
reduction operation is performed in this process, while
preserving detailed object edge information, focusing the
main feature extraction capability on the lightweight densely
connected contextual refinement branch.
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Figure 1. The structural diagram of Attention-Refined Two-Branch Real-Time Semantic Segmentation Networks (ARTRNet).

The basic construction of the lightweight dense connection
context refinement branch mainly consists of a lightweight
dense feature module consisting of a DownSampling Module
(DSM) and a lightweight Ghost module[31], and the specific
structure of the DSM module and the Ghost module is shown
in Figure 2. Specifically, on the lightweight dense
connectivity context refinement branch firstly goes through
three stages, DSM-1, DSM-2 and DSM-3, which rapidly
downsample the feature map to 1/8 of the original map while
widening the number of channels, and after that, it will enter
into the dense feature module-1 consisting of 5 Ghost
modules, and after that, after going through one DSM-4
module for downsampling, it enters into the Dense Feature
Module-2 consisting of 7 Ghost modules, and finally the
sense field is expanded by a context embedding block to
capture the high-level semantics, and the feature map is
downsampled to 1/32. The features of Dense Feature Module-
1 are selected to be output to the Attention Refinement
Module (ARM) after downsampling the feature map to 1/16.
The ARM module calculates feature map weights using
pooling and 1 X 1 convolution, which are then multiplied with
the input feature maps to compute channel attention. The
specific structure is shown in Figure 2. The 1/32 feature maps
from the context embedding block are up-sampled and
operated and then summed with the feature maps passing
through the ARM and passed into the Low Resolution
Context Aggregation Module (LRCAM) consisting of the
lightweight Ghost module, and outputs the final result of the
semantic segmentation. In the final fusion stage, Deformed
Convolutional ~Attention Refinement Fusion Module
(DCARFM) is proposed, which can enhance the feature
expression of the branch by cross-fertilising the dual branches
with the attention refinement operation respectively, and at
the same time, it can replace some complex attention
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computations to reduce the contextual differences between
the high-level semantic information and the underlying
spatial detail information.

3.2. Lightweight Dense Connection Context
Refinement Branch

The spatial detail branch combines convolutional and
nonlinear mapping layers to capture detailed information
from local regions. Typical semantic branching focuses on
delivering deep semantic information to distinguish between
various object types. This process involves a more intricate
branch and is also more time-intensive. To accelerate
segmentation, a lightweight densely connected contextual
refinement branch is employed to lower the computational
cost of semantic branching. This chapter adopts a similar
connectivity strategy as EDANet[20], incorporating a new
DSM module and a dense connection block using the
lightweight Ghost module within the context branch. Firstly
three DSM modules perform continuous downsampling to 1/8
of the original image, three paths will be divided in each DSM
module, two paths first go through a 3 X3 convolution for 2-
fold downsampling, and the other path undergoes maximum
pooling for downsampling, and after that the three paths are
channel-level summed up and then go through the BN and
RELU activation functions, and maximum pooling is used
instead of part of the convolution, which reduces the cost of
computation. The specific structure is shown in Figure 2.
After that, it will pass through a dense link block-1 consisting
of five lightweight Ghost modules, inspired by DenseNet[32],
which replaces the convolutional blocks in the dense link with
lightweight Ghost modules with smaller parameter counts and
faster computation speed. Each Ghost module first undergoes
a 1 X1 convolution, BN and RULU activation functions, and

after that, after a 3 X3 group convolution, BN and RULU



activation functions, it outputs the result after channel-level
summation with the residual link. The specific structure is

shown in Figure 2.
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Figure 2. Architectural details of the DSM, GM and ARM.

After that, it passes through a DSM module to downsample
the feature map to 1/16, and then passes through a dense
connection block-2 composed of seven lightweight Ghost
modules and then passes into the context embedding block to
get 1/32 feature map, and the feature map from the dense
connection block-1 passes through the ARM module for
attention refinement operation, and the ARM module first
passes through a convolution block composed of convolution,
BN and RULU activation function, and then passes through a
convolution block composed of 3 X3 group convolution, BN
and RULU activation function, and then passes through the
residual link to output the result after channel-level
summation. The ARM module first passes through a
convolution block consisting of convolution, BN and RULU
activation functions, after which it performs average pooling
and maximum pooling operations for pixel-level summation,
and then passes through a 1 X1 convolution, BN and Sigmiod
activation functions, and then performs pixel-level
multiplication with residual connections after the convolution
block to output the result.Following the ARM module
immediately after upsampling to 1/16 of the original image,
and after the context embedding block after the up-sampling

of the feature map for pixel-level summation and input to the
low-resolution context aggregation module, the addition of
the low-resolution context aggregation module at the end of
the feature extractor is mainly to enhance the spatial
information processing ability of lightweight dense
connection context refinement branch anywhere. In this way,
the network is able to process images with complex spatial
structures more efficiently, while allowing better articulation
with spatial detail branches. Mimicking pyramid pooling
without adding parameters, the convolution is substituted
with a lightweight Ghost module, and the whole module is
divided into five layers, with only one Ghost module in the
first layer to get the feature map F1, two consecutive Ghost
modules in the second, third, and fourth layers to get the
feature maps F2, F3, and F4, and the fifth layer to first
perform an average pooling operation and then enter a Ghost
module to obtain the feature map F5. After that, F5 and F4 are
pixel-level summed to obtain F44, and so on, to obtain the
feature maps F33, F22, and F11, and finally the results are
output by channel-level summing of F11, F22, F33, F44, and
F5, and residual connections from the input image. The
detailed structure is illustrated in Figure 3.
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Figure 3. Architectural details of the LRCAM.



3.3. Deformed Convolutional Attention
Refinement Fusion Module(DCARFM)

Low-resolution features contain rich semantic information,
while high-resolution features better preserve spatial details.
To effectively integrate the deep semantic information from
the lightweight densely connected contextual refinement
branch with the spatial detail information from the spatial
detail branch, we draw inspiration from D-LKA Attention[33]
to propose a Deformed Convolutional Attention Refinement
Fusion Module. This module primarily consists of a
Deformed Convolutional Attention Refinement Module. The
detailed structure is depicted in Figure \ref{fig4 }. Firstly, in
the fusion stage, a cross-fertilisation approach is adopted,
specifically, the output results of the lightweight dense
connectivity context refinement branch are first up-sampled

and the results of the spatial detail branch are channel-level
summed and then passed into the Deformed Convolutional
Attention Refinement Module (DCARM) to carry out the
process. DCARM is used for refinement processing,
primarily filtering the features from the spatial detail branch
after summation to emphasize its feature representation. After
that, the spatial detail branch is downsampled and channel-
level summed with the lightweight dense connection context
refinement branch, and then passed into the deformed
convolutional attention refinement module, where the
refinement process is mainly to filter the features of the
lightweight dense connection context refinement branch after
summing, and highlight the feature representation of the
lightweight dense connection context refinement branch. The
results from these two refinements are fed into the feature
fusion module, which then produces the final output.

Figure 4. Architectural details of the DCARFM.

4. Experiments

In this section, we will evaluate the proposed ARTRNet on
two datasets: Cityscapes[34] and CamVid[35]. We will
compare its performance with other notable real-time
semantic segmentation methods to demonstrate its
advantages. In the following subsections, we will outline the

implementation details of the datasets and training parameters.

Next, we analyze the effectiveness of the Attention Refined
Two-Branch Real-Time Semantic Segmentation network
structure and conduct thorough ablation experiments on the
Cityscapes dataset to validate each module's efficacy in our
method. Finally, we compare our final accuracy and speed
(FPS) results with other algorithms across various
benchmarks.

4.1. Datasets and Evaluation Metrics

Cityscapes: The Cityscapes dataset[34] is a widely utilized
large-scale dataset for semantic segmentation of urban scenes,
serving as a prominent benchmark in computer vision
research and algorithm evaluation. The dataset consists of
high-resolution images from 50 cities in Germany, covering
different weather conditions, different seasons and various
urban scenes. The images contain rich semantic information
such as roads, pedestrians, vehicles, buildings, etc., making
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them ideal for deep learning models for semantic
segmentation studies in urban scenes. The Cityscapes dataset
consists of high-resolution images, each meticulously
annotated at the pixel level with labels covering 30 different
categories. The dataset can be divided into two subsets with
two levels of annotation: fine and coarse. The finely annotated
Cityscapes dataset includes 5000 high-resolution images,
with 2975 images allocated for training, 500 for validation,
and 1525 for testing (annotations for the test set are available
on the official website for evaluation). The roughly labelled
dataset, on the other hand, contains 20,000 images. We
usually use the finely labelled dataset, the resolution of these
images is up to 2048 X 1024, which provides detailed and rich
scene information for research and development.

Camvid: The CamVid dataset[35] is a specialized dataset
for semantic segmentation tasks in road scenes, developed by
the Computer Vision Group at the University of Cambridge.
It serves as a valuable resource for research in areas like
autonomous driving and traffic monitoring. It is the first video
collection to integrate semantic labelling of target categories.
The dataset consists of 32 semantic labels and was originally
sourced from video sequences of the Cambridge city area,
with a total of 701 image sequences containing hundreds to
thousands of frames each, which were subsequently generated
by manually selecting more than 700 images to be annotated.



The CamVid dataset comprises 701 images depicting urban
streetscapes, with 367 images used for training, 101 for
validation, and the remaining 233 for testing. The remaining
233 images were used as a test set. This division helps
researchers to train, validate and evaluate the algorithm to
better understand its performance in different scenarios. The
images have a resolution of 960 X 720 and contain 11
commonly used semantic labels.

4.2. Implementation Details

Training Strategy: During training, we utilized the Adam
optimizer along with a polynomial decay learning rate
scheduler and a warm-up strategy. For training, a single RTX
3090 GPU is utilised.Considering the need to process images
with different resolutions, the input resolutions are adjusted
to 512X1024 and 768 X 1536, the batchSize is adjusted to 20
and 10, the maximum number of loops are both set to 140k,
and the initial learning rate is set to le-3 on Cityscapes
dataset.For data enhancement aspect, random scaling, random
fill cropping, and random horizontal flipping techniques are
used. On the CamVid dataset, the input resolution is adjusted
to 720 X 960, the batchSize is adjusted to 16, and the
maximum number of loops is 80k. For data enhancement,
only random cropping is used. In addition, when training on
the CamVid dataset, the trained pre-training weights on the
Cityscapes dataset are added. In the inference phase, this
experiment does not use any acceleration trick over strategy
and uses the test code provided by the PaddlePaddle deep
learning framework for speedup. In order to ensure the
effectiveness of the model in practical applications, images
with different resolutions were used for inference, and the
processing speed and segmentation accuracy were
comprehensively evaluated. Ultimately, the standard metric
of concurrent average intersection and frames per second
were used to compare the performance of different models.

Inference settings: During inference, without employing
acceleration techniques such as sliding window evaluation or
tension acceleration strategies, for the Cityscapes dataset, we
use 768 X 1536 and 512 X 1024 resolutions for inference. For
the CamVid dataset, inference was performed using a
resolution of 960X 720. We used NVIDIA GTX 3090 GPU
and performed all inference experiments on CUDA 11.2 and
CUDNN 8.1 environments. We employed the standard

metrics of mean Intersection over Union (mloU) for
segmentation accuracy comparisons and Frames Per Second
(FPS) for inference speed comparisons.

4.3. Experiments on Cityscapes

4.3.1. Ablation study

In this section, ablation experiments are carried out on each
component in the lightweight densely connected contextual
refinement branch of ARTRNet as well as on the deformed
convolutional attention refinement fusion module. The
method of control variables in physical experiments is taken
and experiments are conducted module by module to see their
effects on the experimental results, thus proving that the
proposed model achieves significant improvements. All
ablation experiments were conducted on the Cityscapes
dataset.

In order to verify the effectiveness of the downsampling
module (DSM), the experiments will be conducted on the
basis of input images with resolutions of 512X 1024 and 768
X 1536, respectively. From Table 1(a), it can be seen that
when the attention refinement module is used for both by
default, the mIoU of the model is not too good at 512X 1024
resolution when normal convolution is used. Whereas when
the DSM module is used, it can be seen that the models all
have better predictions with a slightly improved mloU of 73.2%
than when the DSM module is not used. This could mean that
the DSM provides a better representation of the features
during the downsampling process. A similar trend is observed
at a higher resolution of 768 X 1536. With ARM, the mloU of
ARTRNet with DSM only is 73.2% at 512X 1024 resolution,
while at 768 X 1536 resolution, the mloU improves to 74.2%.
This further confirms the effectiveness of DSM in processing
higher resolution images. Next, in Table 1(b), the effect of
ARM on ARTRNet performance at different resolutions is
explored. Using DSM by default for all, the mloU of
ARTRNet with ARM is 73.2% at 512 X 1024 resolution.
However, at 768 X 1536 resolution, the mloU of ARTRNet
using ARM reaches 74.2%. This shows that ARM plays an
equally important role in attention refinement, especially
when dealing with higher resolution images. The
experimental results in this section highlight the effectiveness
of DSM and ARM in ARTRNet.

Table 1. Comparison of DAM and ARM in ARTRNet on the Cityscapes validation set.

Model Resolution None DSM None ARM mloU
(a) DSM
ARTRNet 512x1024 v v 72.3
ARTRNet 512x1024 v v 73.2
ARTRNet 768%1536 v v 72.8
ARTRNet 768%1536 v v 74.2
(b) ARM
ARTRNet 512x1024 v v 72.6
ARTRNet 512x1024 R v 73.2
ARTRNet 768%1536 v v 72.9
ARTRNet 768%1536 R v 74.2

To assess the impact of the Low Resolution Context
Aggregation  Module (LRCAM) and  Deformed
Convolutional Attention Refinement Fusion Module
(DCARFM) on semantic segmentation performance across
various resolutions. In this subsection, ablation experiments
are performed on the Low Resolution Context Aggregation
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Module (LRCAM) and Deformed Convolutional Attention
Refinement Fusion Module (DCARFM). Using the DSM
module and ARM module by default, Table 2(c) demonstrates
the experimental results of the low-resolution context
aggregation module (LRCAM), from which it can be seen that
the model with the introduction of the LRCAM improves the



mloU from 74.5% to 75.7% compared to the model without
the LRCAM at a resolution of 512 X 1024. This result
indicates that at lower resolutions, LRCAM can effectively
aggregate  contextual information, thus improving
segmentation accuracy. At a higher resolution of 768 X 1536,
LRCAM also demonstrates its advantages, resulting in an
increase in mloU from 75.3% to 76.9%. This further confirms
the effectiveness of LRCAM in capturing richer contextual
information. Table 2(d) demonstrates the experimental results

of the Deformed Convolutional Attention Refinement Fusion
Module (DCARFM), from which it can be seen that the
introduction of the DCARFM improves the mloU of the
model from 74.4% to 75.7% at 512 X 1024 resolution.
However, at 768 X 1536 resolution, the model with DCARFM
outperforms the model without DCARFM by 76.9% mloU.
The experimental results confirm the effectiveness of
LRCAM and DCARFM in ARTRNet.

Table 2. Comparison of ablation experiments of LRCAM and DCARFM in ARTRNet on Cityscapes validation set.

Model Resolution None LRCAM None DCARFM mloU
(a) LRCAM
ARTRNet 512x1024 R v 74.5
ARTRNet 512x1024 v v 75.7
ARTRNet 768%1536 v v 75.3
ARTRNet 768%1536 v v 76.9
(b) DCARFM
ARTRNet 512x1024 v v 74.4
ARTRNet 512x1024 v N 75.7
ARTRNet 768%1536 v N 75.4
ARTRNet 768%1536 v v 76.9

4.3.2. Comparison with SOTA Methods

In this subsection, we present performance results of
ARTRNet on the Cityscapes and CamVid datasets, followed
by comparisons with other state-of-the-art real-time semantic
segmentation methods to validate its effectiveness. The
evaluation is conducted using a resolution of 768 X 1536 for
Cityscapes and 720 X 960 for CamVid. The models are
assessed based on four key metrics: Floating-Point
Operations per Second (FLOPs), number of parameters, mean
Intersection over Union (mloU), and inference speed (FPS).
A comprehensive analysis of these metrics is provided below.

Table 3 compares ARTRNet with nine other models on the
Cityscapes dataset. Special attention is given to the
performance comparison between ARTRNet and BiSeNetV2.
BiSeNetV2, a lightweight network, is designed to prioritize
fast inference speed without compromising on accuracy.
Without the use of a pre-trained backbone network,
BiSeNetV2 achieves 73.4% mloU and 156 FPS at 512 X 1024
resolution without using accelerated processing, which shows
that it is competitive in real-time applications. In comparison,
ARTRNet achieved 76.9% mloU and 96 FPS at a higher
resolution of 768 X 1536. This result suggests that ARTRNet
has improved in accuracy despite being slightly slower than
BiSeNetV2. This enhancement may be attributed to the

specific structure and optimisation strategies that ARTRNet
employs in its network design, which help to capture finer
image details and thus improve the accuracy of segmentation.
Table 3 shows that most of the models are pre-trained on
ImageNet, which is a time-consuming process but can be
traded off for a relatively high segmentation accuracy. In
contrast, the training of the models in this chapter chooses to
start from zero. In addition, due to the limitation of GPU
memory, in order to be able to make the training gradient
more accurate, the ARTRNet model in this section is loaded
with the pre-training weights of ARTRNet with a resolution
0f 512X1024 size on top of the resolution of 768 X 1536 size.
As can be seen from Table 3, the ARTRNet in this section
achieves a balance between accuracy and speed. In terms of
mloU, the method in this section is significantly better than
other more advanced methods such as BiseNetV2[18]. In
Table 3, this paper uses no to denote that the method has no
backbone. backbone denotes in the backbone model. "*"
indicates that the inference speed, GFLOPs and parameters of
the model are tested and provided on the platform in this
section. If "I" the method is labelled with, the accelerated
processing is performed using TensorRT. "-" indicates that the
methods do not report the corresponding results.

Table 3. Comparison with other methods on the Cityscapes dataset.

Model Backbone Resolution GFLOPs Params mloU FPS
DFANet[27] 43-layer CNN 1024x1024 3.4 7.8M 713 100
SwiftNet[37] ResNet18 1024x2048 104.0 11.8M 75.5 39.9
LRNNet[38] 55-layer CNN 512x1024 8.58 0.68M 72.2 71

RTHP[39] MobileNetV2 448x896 49.5 6.2M 73.6 51
PP-LiteSeg-T1[40] STDC1 512x1024 - - 73.1 273.6
PP-LiteSeg-T2[40] STDCl1 768x%1536 - - 76.0 143.6

BiSeNetV1[17] Xception 39 768%1536 14.8 5.8M 69.0 105.8
BiSeNetV1[17] ResNet18 768%1536 55.3 49M 74.8 65.5
STDC1-Seg50*+[36] STDCI1 512x1024 24.8 8.3M 72.2 206.9
STDC2-Seg50*[36] STDC2 512x1024 38.0 12.3M 74.2 156.6
STDC1-Seg75*+[36] STDCl1 768%1536 55.9 8.3M 74.5 140.7
STDC2-Seg75*t[36] STDC2 768x%1536 85.6 12.3M 77.0 106.2
BiSeNetV2$[18] no 512x1024 21.1 - 734 156
BiSeNetV2-L1[18] no 512x1024 118.5 - 75.8 47.3
ARTRNet no 512x1024 19 6.6M 75.7 132
ARTRNet no 768x1536 38.6 6.6M 76.9 96
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4.3.3. Experiments on CamVid lower than that of the accelerated BiSeNetV2[18]. Meanwhile,
To further validate the generalization of ARTRNet, ARTRNet achieves a good bglance of speed and accuracy,
experiments were also conducted on the CamVid dataset with which further proves the superior performance of the method.

an input resolution of 720 X 960 using the same configuration. In Table 4, this section uses "*" to denote the pre-training of
The specific results are detailed in Table 4. ARTRNet the model loaded with ARTRNet under 3/4 graph. If the

performs the best, achieving 76.5% mloU and 110.4 FPS method is labelled with "I", the accelerated processing was
which is higher than that of STDC2-Seg[36] but slightly ~ Performed using TensorRT.

Table 4. Comparison with other methods on the CamVid dataset.

Model Backbone GPU mloU FPS
ENet[41] 43-layer CNN TitanX 51.3 61.2
ICNet[16] PSPNet50 TitanX 67.1 27.8
DFANet A[27] Xception A TitanX 64.7 120
DFANet B[27] Xception B TitanX 59.3 160
SwiftNet[37] ResNet18 GTX 1080Ti 72.6 -
BiSeNetV1[17] Xception39 GTX 1080Ti 65.6 175
BiSeNetV1[17] ResNet18 GTX 1080Ti 68.7 116.3
STDCI1+[36] STDC1 GTX 1080Ti 73.0 197.6
STDC2+[36] STDC2 GTX 1080Ti 73.9 152.2
BiSeNetV2[18] no GTX 1080Ti 72.4 124.5
BiSeNetV2-L[18] no GTX 1080Ti 73.2 32.7
BiSeNetV2*[18] no GTX 1080Ti 76.7 124.5
ARTRNet no RTX 3090 76.5 110.4
4.3.4. Visualization Experiments on Cityscapes these comparison plots, it can be clearly observed that our
To visually highlight the significant advantages of our method is the closest to the real-world scenarios in terms of
proposed method, Figure 5 compares our approach with presenting results, i.e., our method exhibits a superior
several other methods on the Cityscapes dataset. Through perf}(:rglance in comparison with the three comparable
methods.

()

(b)

©

4 /3
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Figure 5. Visualisation of segmentation results of iSeNetVl, BiSeNetV2 and ARTRNet on Cityscape dataset. (a) Input
image; (b) Ground Truth; (c) BiSeNetV1; (d) BiSeNetV2; (e¢) ARTRNet.

5. Conclusion many existing methods prioritize accuracy over speed.
Although BiSeNetV2 is effective, its speed improvement is

Real-time semantic segmentation is increasingly crucial in limited while maintaining high accuracy. Therefore,
demanding scenarios like autonomous driving. However, achieving a balanced trade-off between speed and accuracy is
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a key focus of current research. In this paper, we introduce an
efficient Attention Refined Two-Branch Real-Time Semantic
Segmentation Network. We propose lightweight densely
connected contextual refinement branches to reduce
computational load and improve speed while ensuring
accuracy. Additionally, to address the challenge of feature
map detail loss during branch fusion, we propose the
Deformed Convolutional Attention Refinement Fusion
Module. This module refines feature map details through
deformed convolutional attention refinement operations,
enhancing the segmentation capability of the model.
Experimental results on Cityscapes and CamVid datasets
demonstrate that our proposed ARTRNet achieves a favorable
balance between segmentation accuracy and inference speed,
surpassing other representative real-time semantic
segmentation methods.
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