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Abstract: With the rapid development of modern science and technology, navigation technology plays a crucial role in
transportation, aerospace, military and other fields. At present, a single navigation technology has been difficult to meet the
complex navigation needs of high mobility carriers or special environments. Aiming at the above problems, this paper carries
out an in-depth study on the tightly coupled navigation system of Strapdown Inertial Navigation System (SINS) and Global
Navigation Satellite System (GNSS), and introduces the square-root information Kalman filtering algorithm. The algorithm takes
the information matrix (the inverse of the mean square error matrix) as the updating object, which effectively avoids the
numerical instability and non-positive characterization problems that may occur in the iterative process of the mean square error
matrix. Compared with the traditional extended Kalman filter, the square-root information Kalman filter has higher numerical
stability and computational efficiency in dealing with nonlinear systems, which is especially suitable for multi-sensor fusion

scenarios.
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1. Introduction

With the rapid development of modern navigation
technology, the demand for high-precision and high-
reliability navigation and localization is growing in military,
civil and industrial fields. In complex environments such as
urban  canyons, tunnels, underground spaces or
electromagnetic interference scenarios, it is often difficult for
a single navigation system to meet the actual needs. For
example, global navigation satellite systems rely on external
signals and are susceptible to occlusion or interference, while
inertial navigation systems, though autonomous, accumulate
errors over timel'l. Combining the Strapdown Inertial
Navigation System with the global navigation satellite
systems can combine the advantages of inertial navigation's
strong anti-jamming ability and the advantages of satellite
navigation's high long-term accuracy to form a
complementary system.

There are three main combinations of current combined
inertial/satellite navigation systems, namely loose coupling®,
tight coupling®®! and deep coupling!®. The loose combination
approach simply fuses the outputs of an inertial navigation
system and a satellite navigation system, usually by
correcting the errors of the inertial navigation system through
a Kalman filter. In the tight coupling approach, the
pseudorange and Doppler shift of the satellite navigation
system are directly fused with the state quantities of the
inertial navigation system, enabling better utilization of
satellite navigation information. The deep combination
approach, on the other hand, deeply integrates the receiver of
the satellite navigation system with the inertial navigation
system, and even fuses them at the signal processing level to
further improve the system's anti-interference capability and
reliability.

Kalman filtering is the core algorithm for state estimation,
the traditional Kalman filtering algorithm assumes that the
system is linear and the noise is Gaussian distribution, in
order to the nonlinear system model and non-Gaussian noise,
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the researchers proposed the extended Kalman filtering
algorithm, which linearizes the nonlinear model through the
Taylor Expansionl], but it is prone to dispersion in the strong
nonlinear scenario. Some scholars have proposed several
adaptive algorithms, such as the Sage-Husa algorithm, which
can dynamically adjust the noise covariance matrix R to
improve the robustness to abrupt noise, and is suitable for
intermittent satellite signal scenarios. Aiming at the
limitations of the EKF algorithm, based on the filtering
method of nonlinear transformation, the vast number of
scholars have also proposed the traceless Kalman filter and
the volumetric Kalman filter. UKF approximates the
nonlinear distribution through the traceless transformation,
avoids the calculation of Jacobi matrix, and improves the
positioning accuracy by about 20% compared with the EKF
in the inertial/satellite tight coupling.

In recent years, deep learning has been used to combine
with traditional Kalman filtering algorithms to produce neural
network-assisted Kalman filtering methods, which utilize
LSTM networks to predict inertial device errors, and end-to-
end filtering networks that directly model the observation of
noise characteristics through CNN-Transformer networks,
which can replace the manual noise modeling of traditional
Kalman filtering, and show stronger Adaptability in dynamic
interference scenarios. Aiming at the problem that the mean
square error matrix in Kalman filtering tends to lose its
positive definiteness and the demand of multi-sensor fusion,
square-root filtering and information filtering are proposed in
this paper. Square-root filtering updates the square-root of the
mean square error matrix by Cholesky decomposition or QR
decomposition to improve numerical stability. Information
filtering takes the information matrix, which is the inverse of
the mean square error matrix, as the updating object to avoid
matrix inversion, making it more suitable for multi-sensor
data fusion.



2. SINS/GNSS Tightly Coupled
Navigation System

In the tight coupling system, the global satellite receiver
provides the raw information pseudorange and pseudorange
rate used for localization to the Kalman filter, and the errors
of each pseudorange and pseudorange rate are independent of
each other. The strapdown inertial navigation system (SINS)
solution module receives the specific force and angular rate
information output from the IMU, generates the navigation
output position and velocity information for the SINS, and
calculates the pseudorange and pseudorange rate by
combining this information with the ephemeris generated by
the satellite receiver. The differences in pseudorange and

pseudorange rate between those derived from the strapdown
inertial navigation system (SINS) information and those
generated by the satellite receiver are used as inputs to the
Kalman filter to obtain the state error estimate of the SINS.

The gyro drift and accelerometer bias in this state error
estimate are fed back to the strapdown inertial navigation
system (SINS) for correction. The position and velocity errors
in the SINS, after being corrected using the position and
velocity errors from this state error estimate, are then used as
the final results of the tightly coupled SINS/GNSS navigation
systeml®l. The architecture of the tightly coupled system is
shown in Figure 1.
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Figure 1. The architecture of SINS/GNSS tightly coupled system

(1) SINS/GNSS error update equation

The SINS error state consists of the position error 8p, the
velocity error év™, the attitude error Angle @™, the
gyroscope etror €” and the accelerometer error V2.

The error state vector!’! is

X; = [6L 64 8h 6vy 6V, 6V, @x Py O Epx Eby bz Vix Voy Vsl

In the equation, 6L is the latitude error, 4 is the

longitude error, §h is the altitude error. The b-frame is the
body frame, and the n-frame is the navigation frame.

The error state equation of the SINS is expressed as:

XI=FIXI+GIWI (1)

In the the noise W, =

[ng Wy Wgz Wax Way waZ]T, represents the components
of the gyroscope angular velocity measurement noise and the
accelerometer specific force measurement noise in the three
coordinate directions of the b-framel®l. F; is the inertial
navigation state matrix, and G; is the inertial navigation
noise matrix.

equation, system

The main errors in satellite navigation systems are clock
bias and clock drift. Equivalent range errors and velocity
errors are selected as the error states of the satellites in the
tightly coupled system.The GNSS error state equation is
expressed as:

Sty = Sty + Wiy ()
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3)

Otry = Wery

In the equation, 8t, and 6t represent the range and
range rate corresponding to the receiver clock bias and clock
drift, respectively™. wy, and wy., are white nois. The
equation can be represented in matrix form as:

Xp =FpXp+ GpgWpg 4

In the equation, Xp = [6t, Ot.y]T» Wg = [Weu Wird]".

By combining the SINS error state equation (1) with the
GNSS error state equation (4), the tightly coupled navigation
system state equation can be obtained!'%':

X, _[F, OHX,]_I_ G, OHW,] )
XB “ o Fgl|Xg 0 Ggl|[Wpg
That is:
Xt = FtXt + GtWt (6)

(2) System Measurement Equation

In the tightly coupled navigation system, the measurement
information mainly consists of the differences in pseudorange
and pseudorange rate. Specifically, the system employs the
differences between the pseudoranges and pseudorange rates



calculated by the SINS and those measured by the GNSS as
the measurement information!'!). This measurement approach
enables the direct utilization of raw GNSS observations,
thereby facilitating more precise error modeling and higher
navigation accuracy. The measurement equation of the tightly
coupled system is given by:

H 4
Z, = [HZ] X, + [VZ] =HX,+V, (7)

The pseudorange and pseudorange rate measurement
equations play a significant role in the tightly coupled inertial
and satellite navigation system. By integrating data from the
inertial navigation system, they notably enhance navigation
accuracy and reliability.

3. Extended Kalman Filter

The core idea of the Extended Kalman Filter (EKF) is to
linearize the nonlinear system through a Taylor series
expansion, ignoring higher-order terms. In this paper, the
Taylor series is expanded to the first order. Assume the
discrete-time state-space nonlinear model is given by:

{Xk = f(Xk-1) + T Wiy_q )

Zk = h(Xk) + Vk

E[W,] =0, E[W,W]] = Qyby;
E[Vi ] =0, E[ViVi] = Ribyj »
E[W, V] =0

where X, is the n-dimensional state vector, f(X;) =
[A(Xk) (X)) .. fu(X))]T is the n-dimensional nonlinear

vector function, Zj is the m-dimensional measurement

vector, h(Xp) = [h(Xy) hy(Xy) oo hpy (X, )]T is the m-
dimensional nonlinear vector function, I'_; is the system

noise distribution matrix, W_, is the system noise vector,
and V}, is the m-dimensional measurement noise vector.

In the equations,

The EKF filtering equations for the nonlinear system with
state X, are given by!!2!:

jzk/k—l = f(jzk—ﬂ
Pijk-1 = Piji-1Pi1Pp iy + Ti-1Qu-1T5—1
Ki = Pyjp-1Hi(H Py i1 HE + R ™!
X = Xi/k-1 + KilZy — h(Xy/p-1)]
Py=U-KH)Py/r1

)

In the equations, @y /_1 is the system Jacobian matrix,
Dy /-1 = J(f(X,-1)), and H, is the measurement Jacobian
matrix, Hy, = J(h(X}, /k—1))- 1f the nonlinear functions are
complex to differentiate or even non-differentiable, the first-
order partial derivatives can be approximated using the
central difference method.
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4. Square-Root Information Kalman
Filter Algorithm

(1) Potter Square-Root Filtering

The Potter square-root filtering decomposes the mean
square error matrix P into the product of a lower triangular
matrix A , that is, P = AAT , and operates solely on these
lower triangular matrices during the filtering process. This
approach reduces numerical errors caused by the ill-
conditioning of the mean square error matrix.

Assume the square-roots of the mean square error matrices
Pk—l’ Pk/(k—l) 5 and Pk are Ak—l’ Ak/(k—l) 5 and Ak 5
respectively. The measurement update of the state estimation
mean square error matrix and its corresponding square-root
filtering equations are given by:

Py =Pyjp-1)— Pk/(k—l)H'lE(HkPk/(k—l)H; + Rk)_lHkPk/(k—l) (10)

Ay = Ayl — AL g1y Hi (PrPE + RiPD_lHkAk/(k—l)] (11)
1
In the equations, R} denotes the square-root matrix of
Rk . The matrix Pk satisﬁespkp}; = HkPk/(k—l)Hz + Rk =
T T
1 Aya-1yHi N .
2 1 . The square-root matrix
[HkAk/(k—l) Rk] (RE)T q pk
k
is obtained using the QR decomposition method.
(2) Information Filtering and Information Fusion
The information matrix is the inverse of the mean square
error matrix!'¥], while the information vector is the product of
the state estimate and the information matrix. This
representation makes information filtering more efficient and
intuitive when dealing with multi-sensor data fusion and
distributed systems. Let I = Pz*!"4l Then, the so-called
information filtering equations expressed in terms of the
information matrix are given by:

Tese-1) = (@aesge—1) 121 Py 1) + Tiee1 Que—1Ti-1) ™
Tie = liye-1y + Hi R Hye
K, = I;*HIR;!
l Xi/e-1) = Preje-1yXi-1
X = Xijk-1) + Ki(Zi — HiXpeje-1)

(12)

(3) Square-Root Information Extended Kalman Filter

Let the square-roots of the information matrices [, and
Ii/k-1) be denoted as I = &&F and

$ie/(k-1)$kye—1) - TESpectively.
The information prediction equation is given by:

Tie/re-1) =

Tijte=1) = Pic)e—1)Ik-1Ph 1) —
D -1 Te-1 P the-1) -1 Te—1 P k-1 Tk-1 P ge—1) Te—1 +

Qil) ™ X T @y 1) lk-1 Pic a1y (13)

Analogous to the mean square error matrix update in the
standard Kalman filter, the square-root information Kalman



filter time update algorithm can be obtained by replacing the
symbols Ay = Exye-1)» Ar/k-1) = Pic/k-1y$k-1> Hi =
1 1

T %R, ~ Q2"
Ek/t-1) = Pic)e-1)Ek-1 {I — &1 Pic /-1y Tkt [PkPch +

L -1
(Qkil)TPE] rlg‘—1¢;/1£k—1)fk—1} (14)

In the equation, pj is obtained by performing QR
i1 Pic/ -1 k-1
1 .
Q4
The measurement update algorithm for the Square-Root

Information Kalman Filter can be derived from the equation
L = L1y + HTR;'H, . Performing QR decomposition

decomposition on

&k /te-1)
on| 1
R H,

yields &F.

In the Square-Root Information Kalman Filter, the initial
state estimation mean square error matrix can be set to infinity,
corresponding to the information matrix being a zero matrix.
Consequently, the initial square-root matrix &, can also be
set to the zero matrix, indicating a lack of initial information
about the state.

5. Simulation Analysis

To verify the effectiveness of the Square-Root Information
Kalman Filter in the SINS/GNSS integrated navigation
system, a set of experimental data, including approximately
15 minutes of IMU and satellite receiver data, was selected
for MATLAB simulation.

The IMU data includes timestamps, three-axis gyroscope
measurements, and three-axis accelerometer measurements.
The satellite receiver data includes timestamps,
pseudorandom noise codes, ionosphere-free pseudorange
linear combinations, tropospheric delay, ionospheric delay,
relativistic corrections, satellite clock bias and drift, satellite
position and velocity in the Earth-Centered Earth-Fixed
(ECEF) frame, elevation angle, azimuth angle, and user range
error. Satellite positioning systems employ the pseudorange-
based single-point positioning method, which utilizes
ionosphere-corrected  pseudorange measurements and
satellite clock bias corrections. By applying the least squares
method, the three-dimensional position of the receiver is
computed. Additionally, the residuals from the single-point
positioning are used to evaluate the accuracy of the solution,
enabling rapid and effective real-time positioning.

The system initial state is configured as follows: the initial
attitude uncertainty is set to 20 ©°, the initial velocity
uncertainty is set to 0.1 m/s, and the initial position
uncertainty is set to 10 m. The initial accelerometer bias
uncertainty of the IMU is set to 10,000 pm/s?, and the initial
gyroscope bias uncertainty of the IMU is set to 10 °/h. The
initial clock bias is set to 10 m, and the initial clock drift is set
to 0.1 m/s. The experimental parameters are configured as
shown in Table 1 and Table 2.
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Table 1. IMU Module Parameter Configuration

Parameter Names Value Unit
Gyroscope Noise Power o2
Spectral Density 0.01 (*/hy/Hz
Accelerometer Noise 5
Power Spectral Density 0.1 (hg)*/Hz
Gyroscope Bias Random
Walk Power Spectral 4.0x10-!" rad?/s’
Density
Accelerometer Bias
Random Walk Power 1x10%3 m?%/s’

Spectral Density

Table 2. GNSS Receiver Parameter Configuration

Parameter Names Value Unit
Observation Time Interval 1 S
Number of Satellites 30 /
Mask Angle 10 °
Receiver Clock Frequency | m?/s3
Drift Power Spectral Density
Receiver Clock Phase Drift | m?/s
Power Spectral Density
Pseudorange Measurement 25 m
Noise Standard Deviation ’
Pseudorange Rate m/s
Measurement Noise Standard 0.1

Deviation

The system simulation error results of the square-root
information extended Kalman filter algorithm are shown in
Figure 2.
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(a) Simulation Angle Error Plot of Tightly-Coupled
Navigation System under Square-Root Information
Kalman Filter

Velocity Error

(b) Simulation Velocity Error Plot of Tightly-Coupled
Navigation System under Square-Root Information
Kalman Filter
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Navigation System under Square-Root Information Kalman
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Figure 2. Simulation Error Plots of the Tightly-Coupled
Navigation System under Square-Root Information Kalman
Filter

From the angle error plot, it can be observed that the angle
errors of the system in all three directions are generally within
the range of £0.8 rad. Similarly, the velocity errors in all three
directions are within the range of £1 m/s. Nevertheless, the
position error plot reveals that the Z-direction error surpasses
+10 meters. This can be addressed by integrating
supplementary sensors, such as altimeters or barometers, to
enhance altitude accuracy. Meanwhile, the errors in the X and
Y directions are maintained within +5 meters, well within the
permissible limits of the navigation system.

The system calculations indicate that the standard
deviations of the pitch, roll, and heading angle errors for the
square-root information extended Kalman filter algorithm in
the tightly-coupled navigation system simulation are 0.0093
rad, 0.0091 rad, and 0.0082 rad, respectively. Furthermore,
the standard deviations of the velocity errors in the X, Y, and
Z directions are 0.1536 m/s, 0.1592 m/s, and 0.1435 m/s,
respectively, while the standard deviations of the position
errors in the X, Y, and Z directions are 0.8569 m, 0.9711 m,
and 1.0618 m, respectively. The navigation accuracy achieved
by the square-root information extended Kalman filter
algorithm falls within the acceptable range. The use of the
square root of the information matrix for filter propagation
enhances computational efficiency and ensures numerical
stability.

The simulation results validate that the tightly-coupled
navigation system employing the square-root information
extended Kalman filter algorithm delivers superior estimation
accuracy and reduced mean square error in nonlinear
environments, highlighting its significant potential for
nonlinear system applications. Consequently, integrating
square-root information filtering into tightly-coupled
navigation systems maximizes its strengths in managing
nonlinearities, thereby boosting the system's capability to
adapt to dynamic variations.

6. Conclusion

This paper thoroughly investigates the integrated
navigation approach of the SINS/GNSS tightly-coupled
navigation system and introduces the square-root information
Kalman filter algorithm to enhance the system's accuracy and
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reliability. In summary, the proposed SINS/GNSS tightly-
coupled navigation system based on the square-root
information Kalman filter algorithm demonstrates significant
advantages in improving navigation accuracy, suppressing
error divergence, and enhancing anti-interference capabilities,
highlighting its important theoretical and practical application
value.
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