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Abstract: In view of the strong nonlinearity of the signals in the gestation period of milling chatter, and the problem that the 
traditional time-frequency analysis methods cannot reveal the weak characteristics of the gestation period of chatter well, a 
chaotic characteristic analysis method of milling vibration information is proposed. The milling force signals of stable milling, 
chatter gestation and chatter outbreak states are collected through variable working condition milling force measurement 
experiments, and the chaotic phase space reconstruction method is used to obtain the attractor images of milling force signals in 
different vibration states. The experiments show that the attractor features in the chatter gestation period are more significant 
than the traditional time-frequency features, and the chaotic attractor images can better reveal the weak features in the chatter 
gestation period. 
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1. Introduction 
Chatter, as a hazardous dynamic instability in the milling 

process, severely limits machining efficiency [1]. Milling 
chatter can be predicted by establishing a milling force model 
and analyzing the stability leaflet diagram [2], but the 
nonlinearity of the machining process and the time-varying 
nature of the machining conditions make it difficult for the 
prediction method based on the milling force model to 
completely avoid the occurrence of chatter. Therefore, 
accurate identification of the milling vibration state for timely 
adjustment of the machining process under different milling 
vibration states is beneficial to the realization of adaptive 
control of the milling process, while accurate identification of 
the chatter gestation period is beneficial to realize chatter 
early warning. 

The general steps of milling vibration state identification 
are as follows: firstly, the milling force, vibration or noise 
signals are collected through milling processing experiments, 
and then the characteristic quantities characterizing the 
chattering breeding state are extracted with the help of signal 
analysis and processing methods. Chen et al. [3] implemented 
a recursive feature elimination method using wavelet 
transform and support vector machine for the identification of 
milling vibration states; Wang et al. [4] combined time-
frequency features with features extracted from a self-encoder 
to accomplish the identification of milling vibration states; 
Tran et al. [5] used wavelet packet decomposition to analyze 
milling vibration signals and acoustic signals as a way to 
identify milling vibration states; Wang et al. [6] extracted the 
features of vibration data with the help of variational modal 
decomposition (VMD) and demonstrated experimentally that 
the method can effectively identify milling vibration states; 
Shrivastava et al. [7] constructed an artificial neural network 
with cutting parameters as input and chatter index and 
material removal rate as output, and the model predicted a 
stable domain for milling that was not only chatter-free but 
also had high productivity; Wang et al. [8] used the q-factor 
and the power spectrum value of the determined frequency 
band as the feature vector to identify the milling vibration 

state using support vector machine, and the identification 
accuracy was higher than the conventional index; Sener et al. 
[9] converted the milling vibration signal into a two-
dimensional time-frequency image with the help of 
continuous wavelet transform, which was fed into a deep 
learning model to identify the milling vibration state; Unver 
et al. [10] processed milling vibration signals using ensemble 
empirical modal decomposition (EEMD) with Hilbert-Huang 
transform (HHT) and fed the resulting two-dimensional 
images into a deep learning model for the identification of 
milling vibration states. 

The milling chatter phenomenon in the milling process is 
essentially a nonlinear process, and the collected signals have 
strong nonlinear and non-smooth characteristics [11]. The 
traditional time-frequency analysis method is a linear analysis 
method, which cannot better characterize the weak features of 
the chatter gestation period and is easily disturbed by noise, 
and is not conducive to the early identification of chatter. 
However, the non-linear, non-smooth milling chatter signals 
exhibit a strong randomness that coincides with the chaotic 
characteristics, so the chaotic characteristic analysis method, 
which is a non-linear analysis method, can better reveal the 
weak characteristics of the chatter gestation period. 

To this end, a chaotic characteristic analysis method of 
milling vibration information based on chaotic phase space 
reconstruction is proposed. Firstly, the experimental platform 
is built to conduct multiple sets of milling machining 
experiments, and the milling force signals during the process 
from stable milling to chattering outburst are collected under 
variable depth of cut and width of cut conditions. Secondly, 
according to the chaotic characteristic analysis method, the 
chaotic phase space reconstruction technique is used to obtain 
the attractor images corresponding to the milling force signals 
under different working conditions. Finally, the attractor 
images are compared with the traditional time-frequency 
features to show the advantages of attractor images, and to lay 
the foundation for chaotic attractor images to forecast early 
chatter. 



 

75 

2. Chaotic Phase Space 
Reconfiguration 

During the development of the milling vibration state from 
stable to chatter, the milling force signals can exhibit 
significant nonlinear, non-smooth and chaotic characteristics 
[11]. Chaotic phase space reconstruction is an important 
method to analyze chaotic time series, which can map the 
one-dimensional milling force signal to the three-dimensional 
chaotic phase space to get the corresponding attractor image. 
The attractor image contains the nonlinear characteristics of 
the milling force signal, and changes more obviously with the 
milling vibration state, which is beneficial to the 
identification of the chatter gestation period. 

According to the theory proposed by Packard et al. [12], a 
one-dimensional time series can be reconstructed in a high-
dimensional chaotic phase space by the coordinate delay 
reconstruction method. Suppose there is a set of time series 
{x1, x2, ⋯, xn}, where n denotes the data length, and an m-
dimensional phase space can be obtained by the coordinate 
delay reconstruction method: 

 
ࢄ ൌ ሾݔ, ⋯,ାఛݔ ,  ାሺିଵሻఛሿ          (1)ݔ

 
In the above equation, τ denotes the delay time; m denotes 

the embedding dimension; jൌ1, 2,⋯, N; Nൌnെ(mെ1)τ. 
The phase space trajectory matrix obtained after 

reconstruction is as follows: 
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In the above equation, the multidimensional phase space 

trajectory consists of N phase points, and the phase points 
consist of row vectors Xj. 

According to Takens' theorem [13], for an ideal time series 
of infinite length and without noise, the delay time τ and the 
embedding dimension m can be chosen arbitrarily. However, 
the milling force signal collected during the actual milling 
process is of limited length and contains noise, so the 
appropriate parameters need to be selected by calculation. 
The C-C algorithm proposed by Kim H. S. et al. [14] can solve 
for both the delay time τ and the embedding dimension m. 
The method is not only easy to implement but also has good 
noise immunity [15]. Therefore, the C-C algorithm is used to 
determine the reconstruction parameters τ and m. The milling 
force signal samples are reconstructed in the chaotic phase 
space, and then the resulting chaotic phase space trajectories 
are projected in the two-dimensional plane to obtain two-
dimensional attractor images, and finally, the axes are de-
coordinated and grayed out in order to facilitate the 
observation of the attractor morphology. It should be noted 
that the three-dimensional chaotic phase space trajectory map 
can be projected in any two-dimensional plane to obtain the 
two-dimensional attractor image, but considering the 
simplicity of data processing, the projection in the (x(t), 
x(t+tau)) two-dimensional plane is chosen. The overall flow 
is shown in Figure 1. 

 

 
Figure 1. Chaotic phase space reconstruction of attractor image flow 
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3. Experiment and Analysis 

3.1 Milling Force Signal Acquisition and 
Chaotic Phase Space Reconstruction 

A vertical machining center was used to build the 
experimental platform for variable depth-of-cut and width-of-
cut milling as shown in Figure 2, and to conduct the milling 
force measurement experiment. A 2-tooth carbide end mill 
with diameter φ=20 mm was selected for milling aluminum 
alloy specimen AL7075-T6 with axial depth of cut ranging 
from 0 to 8 mm and a constant machine feed rate of 200 
mm/min. During the experiment, the X- and Y-directional 
milling force signals were collected using a Kistler 9265B 
force measurement stage with a sampling frequency of 9000 
Hz during the experiment. 

 

 
Figure 2. Milling experiment platform 

 
A total of four sets of variable depth-of-cut and width-of-

cut milling experiments with different machining parameters 
were designed, as shown in Table 1. 

 
Table 1. Milling experiment parameters 

Number Spindle 
speed 

Cutting 
depth 

Cutting 
width 

1 2600 0~8 20 
2 3800 0~8 20 
3 3050 6.5 10~20 
4 2800 3~9 15~20 

 
With 1024 data sampling points as one sample, 1328 time-

domain milling force signal samples can be obtained by 4 sets 
of milling processing experiments. According to Fig. 1, the 
time domain signal samples are reconstructed in chaotic phase 
space to obtain the 3D chaotic phase space trajectory image, 
and the projection in the (x(t), x(t+tau)) 2D plane is selected 
to obtain the 2D attractor image of the samples. 

3.2 Analysis of Signals Chaos Characteristics  

Based on the ratio of the amplitude of the chattering 
frequency to the tooth-pass frequency K, 1328 samples were 
divided, among which the numbers of stable milling, 
chattering breeding and milling chattering samples were 600, 
128 and 600, respectively. The attractor images of the samples 
with different milling vibration states in the Y-direction of the 
experimental group No. 1 are shown in Figure 3. 

 

    
 

(a) Stable milling (K=0)  (b) Chatter gestation (K=0.05)   
 

  
(c) Chatter gestation (K=0.2) 

    
(d) Chatter gestation (K=0.5)  (e) Chatter gestation (K=0.8) 

 
(f) Milling chatter (K≥1) 

Figure 3. Attractor images of different milling vibration 
states 

 
As can be seen from the figure, the shape of the attractor in 

the stable milling state has a self-similar structure, but there 
is no obvious nesting, such as (a) of Fig. 3, which indicates 
that the system has a certain chaotic order. The shape of the 
attractor in the chatter gestation state has a self-similar 
structure and starts to diverge outward, such as (b), (c), (d) 
and (e) of Fig. 3, which indicates that the system has certain 
chaotic properties. The attractor shape in the milling chatter 
state has a clear nested self-similar structure, such as (f) in Fig. 
3, which indicates that the stability of the system decreases 
while the chaotic characteristics increase. From the above 
analysis, it can be obtained that the attractor shape has 
obvious differences during the process from stable milling to 
chatter outbreak, and the attractor image can be used as the 
basis for the identification of milling vibration state. In 
addition, the attractor shape in the chatter gestation period has 
obvious differences compared with the stable milling state, 
however, the time-frequency features in the chatter gestation 
period are weaker and not obvious enough, which indicates 
that the attractor image features in the chatter gestation period 
are more significant than the traditional time-frequency 
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features, and the attractor image can better reveal the weak 
features in the chatter gestation period. 

4. Summary 
For the problem of weak characteristics of the gestation 

period of milling chatter, a chaotic characterization method of 
milling vibration information is proposed. Firstly, the milling 
experiments with variable depth of cut and width of cut were 
carried out on a high-speed vertical milling center, and four 
sets of milling force signal data were collected under different 
working conditions. Secondly, according to the chaotic 
characteristic analysis method of the signal, the chaotic phase 
space reconstruction method was used to map the milling 
force signal to the three-dimensional chaotic phase space, and 
the projection in the (x(t), x(t+tau)) two-dimensional plane 
was selected to form a two-dimensional chaotic attractor 
image. Finally, the differences between the chaotic attractor 
image and the time-frequency image are compared and 
analyzed, and it is demonstrated experimentally that the 
chaotic phase space reconstruction method is very suitable for 
the extraction of weak features, which provides a novel signal 
pre-processing method for the identification of milling 
vibration states. The comparison analysis shows that the 
features of the attractor image are more obvious in the chatter 
gestation period, which is difficult to distinguish in the time-
frequency domains. 

Acknowledgment 
Project of Education Department of Sichuan Province: 

Research on Interface Dynamics Modeling of CNC Machine 
Tool Module (16ZA0070). 

References 
[1] A, Caixu Yue, et al. "A review of chatter vibration research in 

milling." Chinese Journal of Aeronautics 32.2(2019):215-242. 

[2] Zhu, L. , and C. Liu. "Recent progress of chatter prediction, 
detection and suppression in milling." Mechanical Systems and 
Signal Processing 143(2020):106840. 

[3] Chen, G. S. , and Q. Z. Zheng. "Online chatter detection of the 
end milling based on wavelet packet transform and support 
vector machine recursive feature elimination." The 
International Journal of Advanced Manufacturing Technology 
95.1(2018):775-784. 

[4] Wan, S. , et al. "Milling chatter detection by multi-feature 
fusion and Adaboost-SVM." Mechanical Systems and Signal 
Processing 156.2(2021):107671. 

[5] Tran, M. Q. , M. K. Liu, and M. Elsisi. "Effective multi-sensor 
data fusion for chatter detection in milling process." ISA 
Transactions 5(2021):514-527. 

[6] Wang, Yu, et al. "A kMap optimized VMD-SVM model for 
milling chatter detection with an industrial robot." Journal of 
Intelligent Manufacturing 3(2021):1483-1502. 

[7] Shrivastava, et al. "Possible Way to Diminish the Effect of 
Chatter in CNC Turning Based on EMD and ANN 
Approaches." Arabian journal for science and engineering 
43.9(2018):4571. 

[8] Wang, Bo, et al. "Mirror milling chatter identification using Q-
factor and SVM." The International Journal of Advanced 
Manufacturing Technology 98(2018):1163-1177. 

[9] Sener, B. , et al. "A novel chatter detection method for milling 
using deep convolution neural networks." Measurement 
182(2021):182. 

[10] Unver, Hakki Ozgur, and B. Sener. "A novel transfer learning 
framework for chatter detection using convolutional neural 
networks." Journal of Intelligent Manufacturing (2021):1-20. 

[11] Wu, S. , et al. "Experimental Study of Thin Wall Milling 
Chatter Stability Nonlinear Criterion." Procedia Cirp 
56(2016):422-427. 

[12] Packard, N. , et al. "Geometry from a Time Series." Physical 
Review Letters 45.9(1980):712-716. 

[13] Takens, T. . "Detecting strange attractors in turbulence." 
Lecture Note in Mathematics 898(1981):366-381. 

[14] Kim, H. S. , R. Eykholt, and J. D. Salas. "Nonlinear dynamics, 
delay times, and embedding windows." Physica D Nonlinear 
Phenomena 127.1-2(1999):48-60. 

[15] Qin, Y. ,et al. "Research on Phase Space Reconstruction of 
Nonlinear Time Series." Journal of System Simulation 
20.11(2018):5. 

 


