Analysis of the Latest Research Progress on Dark matter in the Universe
DOI:
https://doi.org/10.54097/ajst.v8i2.14951Keywords:
Dark matter; Cosmology; Experimental progress.Abstract
Dark matter research has become the most challenging fundamental research topic in the current physics field. The existence of dark matter has been confirmed, and its characteristics are far beyond that of traditional particle physics. However, its mass, rotation, and interactions with other particles are still not fully revealed. Over the past few decades, theoretical and experimental studies on dark matter have made great strides. We have gained more insights and made significant progress on dark matter from previous studies, from various dark matter models to direct or indirect detections. In this paper, we will investigate the latest development of dark matter experimental research in the past few years, including detection methodology, current status, and some important experimental results, aiming to provide valuable references for future dark matter research.
Downloads
References
Goodman M W, Witten E. Detectability of certain dark-matter candidates[J]. Physical Review D, 1985, 31(12): 3059. DOI: https://doi.org/10.1103/PhysRevD.31.3059
Abe K, Hiraide K, Ichimura K, et al. A direct dark matter search in XMASS-I[J]. Physics Letters B, 2019, 789: 45-53. DOI: https://doi.org/10.1016/j.physletb.2018.10.070
Angle J, Aprile E, Arneodo F, et al. First results from the XENON10 dark matter experiment at the Gran Sasso National Laboratory[J]. Physical Review Letters, 2008, 100(2): 021303. DOI: https://doi.org/10.1103/PhysRevLett.100.021303
Aprile E, Aalbers J, Agostini F, et al. Search for electronic recoil event rate modulation with 4 years of XENON100 data[J]. Physical review letters, 2017, 118(10): 101101. DOI: https://doi.org/10.1103/PhysRevLett.118.101101
Collaboration X, Aprile E, Aalbers J, et al. Dark matter search results from a one ton-year exposure of XENON1T[J]. Physical review letters, 2018, 121(11): 111302. DOI: https://doi.org/10.1103/PhysRevLett.121.111302
Aprile E, Aalbers J, Agostini F, et al. Projected WIMP sensitivity of the XENONnT dark matter experiment[J]. Journal of Cosmology and Astroparticle Physics, 2020, 2020(11): 031-031. DOI: https://doi.org/10.1088/1475-7516/2020/11/031
Xiao M, Xiao X, Zhao L, et al. First dark matter search results from the PandaX-I experiment[J]. Science China Physics, Mechanics & Astronomy, 2014, 57: 2024-2030.
Cui X, Abdukerim A, Chen W, et al. Dark matter results from 54-ton-day exposure of PandaX-II experiment[J]. Physical review letters, 2017, 119(18): 181302. DOI: https://doi.org/10.1103/PhysRevLett.119.181302
Zhang H, Abdukerim A, Chen W, et al. Dark matter direct search sensitivity of the PandaX-4T experiment[J]. Science China Physics, Mechanics & Astronomy, 2019, 62: 1-9. DOI: https://doi.org/10.1007/s11433-018-9259-0
Akerib D S, Akerlof C W, Alqahtani A, et al. Simulations of events for the LUX-ZEPLIN (LZ) dark matter experiment[J]. Astroparticle Physics, 2021, 125: 102480.
Aalbers J, Agostini F, Alfonsi M, et al. DARWIN: towards the ultimate dark matter detector[J]. Journal of Cosmology and Astroparticle Physics, 2016, 2016(11): 017. DOI: https://doi.org/10.1088/1475-7516/2016/11/017
Agnes P, Albuquerque I F M, Alexander T, et al. Low-mass dark matter search with the DarkSide-50 experiment[J]. Physical review letters, 2018, 121(8): 081307. DOI: https://doi.org/10.1103/PhysRevLett.121.081307
Aalseth C E, Acerbi F, Agnes P, et al. DarkSide-20k: A 20 tonne two-phase LAr TPC for direct dark matter detection at LNGS[J]. The European Physical Journal Plus, 2018, 133: 1-129.
Ajaj R, Amaudruz P A, Araujo G R, et al. Search for dark matter with a 231-day exposure of liquid argon using DEAP-3600 at SNOLAB[J]. Physical Review D, 2019, 100(2): 022004. DOI: https://doi.org/10.1103/PhysRevD.100.022004
Agnese R, Anderson A J, Aralis T, et al. Low-mass dark matter search with CDMSlite[J]. Physical Review D, 2018, 97(2): 022002. DOI: https://doi.org/10.1103/PhysRevD.97.022002
Aalseth C E, Barbeau P S, Bowden N S, et al. Results from a search for light-mass dark matter with a p-type point contact germanium detector[J]. Physical Review Letters, 2011, 106(13): 131301.
Armengaud E, Augier C, Benoît A, et al. Searching for low-mass dark matter particles with a massive Ge bolometer operated above ground[J]. Physical Review D, 2019, 99(8): 082003. DOI: https://doi.org/10.1103/PhysRevD.99.082003
Li H B, Liao H Y, Lin S T, et al. Limits on spin-independent couplings of WIMP dark matter with a p-type point-contact germanium detector[J]. Physical review letters, 2013, 110(26): 261301. DOI: https://doi.org/10.1103/PhysRevLett.110.261301
Aalseth C E, Barbeau P S, Bowden N S, et al. Results from a search for light-mass dark matter with a p-type point contact germanium detector[J]. Physical Review Letters, 2011, 106(13): 131301. DOI: https://doi.org/10.1103/PhysRevLett.106.131301
Zhao W, Yue Q, Kang K J, et al. First results on low-mass WIMPs from the CDEX-1 experiment at the China Jinping underground laboratory[J]. Physical Review D, 2013, 88(5): 052004. DOI: https://doi.org/10.1103/PhysRevD.88.052004
Liu Z Z, Yue Q, Yang L T, et al. Constraints on spin-independent nucleus scattering with sub-GeV weakly interacting massive particle dark matter from the CDEX-1B experiment at the China Jinping underground laboratory[J]. Physical review letters, 2019, 123(16): 161301. DOI: https://doi.org/10.1103/PhysRevLett.123.161301
Jiang H,et al.(CDEX Collaboration).Limits on light weakly interacting massive particles from the first 102.8 kg×day data of the CDEX-10 experiment.Phys Rev Lett, 2018, 120: 241301.
Aguilar-Arevalo A, et al.(DAMIC Collaboration). Constraints on light dark matter particles interacting with electrons from DAMIC at SNOLAB.Phys Rev Lett, 2019, 123:181802. DOI: https://doi.org/10.1103/PhysRevLett.123.181802
Barak L, et al.(SENSEI Collaboration). SENSEI:Direct-detection results on sub-GeV dark matter from a new skipper CCD.Phys Rev Lett, 2020, 125:171802. DOI: https://doi.org/10.1103/PhysRevLett.125.171802
Behnke E, Behnke J, Brice S J, et al. First dark matter search results from a 4-kg CF 3 I bubble chamber operated in a deep underground site[J]. Physical Review D, 2012, 86(5): 052001.
Behnke E, Behnke J, Brice S J, et al. First dark matter search results from a 4-kg CF 3 I bubble chamber operated in a deep underground site [J]. Physical Review D, 2012, 86(5): 052001. DOI: https://doi.org/10.1103/PhysRevD.86.052001
Felizardo M, Morlat T, Fernandes A C, et al. First results of the phase II SIMPLE dark matter search[J]. Physical review letters, 2010, 105(21): 211301. DOI: https://doi.org/10.1103/PhysRevLett.105.211301
Krauss C B, PICO Collaboration. PICO-60 results and PICO-40L status[C]//Journal of Physics: Conference Series. IOP Publishing, 2020, 1468(1): 012043. DOI: https://doi.org/10.1088/1742-6596/1468/1/012043
Bernabei R, Belli P, Bussolotti A, et al. First results from DAMA/LIBRA–phase2[J]. Nuclear and Particle Physics Proceedings, 2018, 303: 74-79. DOI: https://doi.org/10.1016/j.nuclphysbps.2019.03.015
Adhikari G, Adhikari P, de Souza E B, et al. Search for a dark matter-induced annual modulation signal in NaI (Tl) with the COSINE-100 experiment[J]. Physical review letters, 2019, 123(3): 031302. DOI: https://doi.org/10.1103/PhysRevLett.123.031302
Amaré J, Cebrián S, Coarasa I, et al. First results on dark matter annual modulation from the ANAIS-112 experiment[J]. Physical review letters, 2019, 123(3): 031301. DOI: https://doi.org/10.1103/PhysRevLett.123.031301
Antonello M, Barberio E, Baroncelli T, et al. The SABRE project and the SABRE Proof-of-Principle[J]. The European Physical Journal C, 2019, 79(4): 1-8. DOI: https://doi.org/10.1140/epjc/s10052-019-6860-y
Fushimi K, Kanemitsu Y, Hirata S, et al. Development of highly radiopure NaI (Tl) scintillator for PICOLON dark matter search project[J]. Progress of Theoretical and Experimental Physics, 2021, 2021(4): 043F01. DOI: https://doi.org/10.1093/ptep/ptab020