Construction of the Aerogel Thermal Conductivity Model based on k×k Sierpinski Carpet Fractal Units
DOI:
https://doi.org/10.54097/2qn1kw21Keywords:
Thermal conductivity model; optimal fractal unit structure; Sierpinski carpet model; aerogel.Abstract
With the characteristics of low density, high specific surface area, and high porosity, aerogel boasts prominent advantages in the field of thermal protection. The thermal insulation performance of aerogel has a significant relationship with its internal microstructure. In this study, the thermal conduction model of Sierpinski aerogel filled with solid in ga
With the characteristics of low density, high specific surface area, and high porosity, aerogel boasts prominent advantages in the field of thermal protection. The thermal insulation performance of aerogel has a significant relationship with its internal microstructure. In this study, the thermal conduction model of Sierpinski aerogel filled with solid in gas is established based on the equivalent circuit method. We calculated the optimal fractal unit structure of the aerogel via its porosity, applied it to the thermal conductivity calculation of four types of aerogels, and revealed the average relative error of less than 11.58%, which is lower than the calculation results of the thermal conductivity model of the aerogel with the fractal unit structure of , indicating the effectiveness and reliability of the proposed thermal conductivity prediction model.
s is established based on the equivalent circuit method. We calculated the optimal fractal unit structure of the aerogel via its porosity, applied it to the thermal conductivity calculation of four types of aerogels, and revealed the average relative error of less than 11.58%, which is lower than the calculation results of the thermal conductivity model of the aerogel with the fractal unit structure of , indicating the effectiveness and reliability of the proposed thermal conductivity prediction model.
Downloads
References
P. Schmidt-Winkel, W. W. Lukens, P. d. Yang, D. l. Margolese, J. S. Lettow, J. Y. Ying, and G. D. Stuck, “Microemulsion Templating of Siliceous Mesostructured Cellular Foams with Well-Defined Ultralarge Mesopores”, Chem. Mater. 12(3), 686-696(2000).
Y. Si, J. Y. Yu, X. M. Tang, J. L. Ge, and B. Ding, “Ultralight nanofiber assembled cellular aerogels with superelasticity and multifunctionality,” Nat. Commun. 5(1), 5802(2014).
H. Y. Li, Q. Wang, Y. H. Hu, G. Yang, L. Shi, B. Cheng, and X. P. Zhuang, “Aramid fibril aerogel from steam- exploded PPTA pulp for thermal insulation,” J. Polym. Res. 29(4), 144(2022).
M. R. Wang, J. H. He, J. Y. Yu, and N. Pan, “Lattice Boltzmann modeling of the effective thermal conductivity for fibrous materials,” Int. J. Therm. Sci. 46(9) 848-855(2007).
J. Fricke, X. Lu, P. Wang, D. Büttner, and U. Heinemann, “Optimization of monolithic silica aerogel insulants,” Int. J. Heat Mass Transf. 35(9), 2305-2309(1992).
S. S. Kistler, “The Relation between Heat Conductivity and Structure in Silica Aerogel,” J. Phys. Chem. 39(1), 79-86(1935).
M. G. E. Kaganer, A. Moscona, “Thermal Insulation in Cryogenic Engineering,” California: Israel Program for Scientific Translations Jerusalem. (1969).
Z. M. Zhang, “Nano/Microscale Heat Transfer,” USA: McGraw-Hill Companies. (2007).
S. Q. Zeng, A. Hunt, and R. Greif, “Theoretical modeling of carbon content to minimize heat transfer in silica aerogel,” J. Non-Cryst. Solids. 186, 271-277(1995).
G. H. Tang, C. Bi, Y. Zhao, and W. Q. Tao, “Thermal transport in nano-porous insulation of aerogel: Factors, models and outlook,” Energy. 90(1), 701-721(2015).
Z. X. Tong, M. J. Li, T. Xie, and Z. L. Gu, “Lattice Boltzmann Method for Conduction and Radiation Heat Transfer in Composite Materials,” J. Therm. Sci. 31(3), 777-789(2022).
A. Kasaeian, R. Daneshazarian, O. Mahian, L. Kolsi, A. J. Chamkha, S. Wongwises, and I.Pop, “Nanofluid flow and heat transfer in porous media: A review of the latest developments,” Int. J. Heat Mass Transf. 107, 778-791(2017).
J. M. Yang, H. J. Wu, G. S. Huang, Y. Y. Liang, and Y. D. Liao, “Modeling and coupling effect evaluation of thermal conductivity of ternary opacifier/fiber/aerogel composites for super-thermal insulation,” Mater. Des. 133, 224-236(2017).
J. F. Guo, and G. H. Tang, “A theoretical model for gas-contributed thermal conductivity in nanoporous aerogels,” Int. J. Heat Mass Transf. 137, 64-73(2019).
C. Y. Zhu, Z. Y. Li, H. Q. Pang, and N. Pan, “Numerical modeling of the gas-contributed thermal conductivity of aerogels,” Int. J. Heat Mass Transf. 131, 217-225(2019).
S. O. Zeng, A. Hunt, and R. Greif, “Geometric structure and thermal conductivity of porous medium silica aerogel,” J. Heat Transfer. 117(4), 1055-1058 (1995).
G. Wei, X. Zhang, and F. Yu, “Effective thermal conductivity analysis of xonotlite-aerogel composite insulation material,” J. Therm. Sci. 18, 142-149(2009).
D. Dan, H. Zhang, and W. Q. Tao, “Effective structure of aerogels and decomposed contributions of its thermal conductivity,” Appl. Therm. Eng. 72(1), 2-9(2014).
G. Pia, L. Casnedi, and U. Sanna, “Porous ceramic materials by pore-forming agent method: An intermingled fractal units analysis and procedure to predict thermal conductivity,” Ceram. Int. 41(5), 6350-6357(2015).
Y. Feng, B. Yu, M. Zou, and D. M. Zhang, “A generalized model for the effective thermal conductivity of porous media based on self-similarity,” J. Phys. D: Appl. Phys. 37(21), 3030-3040 (2004).
Y. Ma, B. Yu, D. Zhang, and M. Zou, “A self-similarity model for effective thermal conductivity of porous media,” J. Phys. D: Appl. Phys. 36(17), 2157(2003).
M. L. Qu, S. Q. Tian, L. W. Fan, Z. T. Yu, and J. Ge, “An experimental investigation and fractal modeling on the effective thermal conductivity of novel autoclaved aerated concrete (AAC)-based composites with silica aerogels (SA),” Appl. Therm. Eng. 179, 115770(2020).
Z. Y. Li, H. Liu, X. P. Zhao, and W. Q. Tao, “A multi-level fractal model for the effective thermal conductivity of silica aerogel,” J. Non-Cryst. Solids. 430, 43-51 (2015).
X. Chen, Y. H. Hu, X. P. Zhuang, and X. Y. Wang, “Study on pore size distribution and thermal conductivity of aramid nanofiber aerogels based on fractal theory,” J. Appl. Phys. 130(22), 225104(2021).
G. Pia, and U. Sanna, “Intermingled fractal units model and electrical equivalence fractal approach for prediction of thermal conductivity of porous materials,” Appl. Therm. Eng. 61(2), 186-192(2013).
B. Xie, Y. H. Hu, L.T. Liu, X. K. Zhang, L. K. Zhang, X. Chen, X. P. Zhuang, and X.Y. Wang. “Thermal conduction model of asymmetric structural aramid nanofiber aerogel membranes based on fractal theory,” Int. J. Heat Mass Transf. 208, 124086(2023).
Z. G. Wang, Z. Q. Zhao, G. Zheng, G. C. Yan, Y. P. Zhu, W. Z. Yang, Y. C. Song, “A "Three Box" analysis model for heat transfer of thermal insulation porous materials based on REV”,42(08), J. Eng. Thermophys. 1950-1957(2021).
S. K. Padmanabhan, C. Protopapa, and A. Licciulli, “Stiff and tough hydrophobic cellulose-silica aerogels from bacterial cellulose and fumed silica,” Process Biochem. 103, 31-38(2021).
S. M. Yang, X. R. Luo, Y. Y. An, L. X. Tu, H. Shen, “Thermal Insulation Properties of Microfibrillated Cellulose Aerogel (in Chinese),” J. Donghua Univ (Eng. Ed.). 38(02), 106-113(2021).
Y. Pan, J. Zheng, Y. Y. Xu, X. G. Chen, M. M. Yan, J. L. Li, X. Zhao, Y. L. Feng, Y. H. Ma, M. Y. Ding, R. W. Wang, and J. X. He, “Ultralight, highly flexible in situ thermally crosslinked polyimide aerogels with superior mechanical and thermal protection properties via nanofiber reinforcement,” J. Colloid Interface Sci. 628, 829-839(2022).
W. Dang, L. Zhao, F.P. Li, C. X. Li, Z. L. Xu, X. Y. Zhang, K. Zhao, Y. F. Tang, “SiC junction enhanced carbon nanofiber aerogels with extremely high specific strength and ultra-low thermal conductivity,” J. Eur. Ceram. Soc. 43(8), 3836-3843(2023).
T. Wang, M. J. Wang, L. Fu, Z. H. Duan, Y. P. Chen, X. Hou, Y. M. Wu, S. Y. Li, L. C. Guo Li, R. Y. Kang, N. Jiang, and J. H. Yu, “Enhanced Thermal Conductivity of Polyimide Composites with Boron Nitride Nanosheets,” Sci. Rep. 8(1), 1577(2018).
X. W. Xie, M. L. Guo, “Introduction to Materials Science and Engineering,” Beijing: Beihang University Press. (1991).
Z. Li, P. Xiao, X. Xiong, B. Y. Huang, “Thermal conductivity of C/C-SiC composites and its influence factors (in Chinese)”, J. Cent. South Univ(Science and Technology). 44(1), 40-45(2013).
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Academic Journal of Science and Technology
This work is licensed under a Creative Commons Attribution 4.0 International License.