Rainbow Capture Based on Underwater Gradient Phononic Crystals

Authors

  • Jialin Zhong

DOI:

https://doi.org/10.54097/p9gfc260

Keywords:

Edge states; rainbow trapping; phononic crystal; underwater structure.

Abstract

Waves of different frequencies are located and captured at different positions, giving rainbow capture a wide range of potential applications in filtering, buffering, energy collection, and other fields. In this paper, we design a rainbow capture structure based on gradient phonon crystals. The edge states change due to the different structural parameters. By designing a gradient structure, the sound waves of different frequencies are separated and trapped at different boundary positions to form the acoustic rainbow effect. Incident waves from different directions produce significantly distinct rainbow trapping effect. The distance sound propagates when excited from the left is increasingly further, while the distance when excited from the right is increasingly shorter. Besides, the symmetrical rainbow effect has also been demonstrated in symmetrical gradient phonon crystals. This work provides a theoretical reference for achieving diverse multiwavelength devices in acoustic systems.

Downloads

Download data is not yet available.

References

Lilly, J.G. Mechanical noise and vibration control. The Journal of the Acoustical Society of America 2021, 150, A23-A23, doi:10.1121/10.0007495.

Zhang, X.H.; Qu, Z.G.; Tian, D.; Fang, Y. Acoustic characteristics of continuously graded phononic crystals. Applied Acoustics 2019, 151, 22-29, doi:https://doi.org/10.1016/j.apacoust.2019.03.002.

Zhang, X.; Qu, Z.; Xu, Y. Enhanced sound absorption in two-dimensional continuously graded phononic crystals. Japanese Journal of Applied Physics 2019, 58, 090904, doi:10.7567/1347-4065/ab3686.

Dong, Q.; Liu, H. A bio-inspired sound source localization sensor with internal coupling. The Journal of the Acoustical Society of America 2019, 145, 1864-1864, doi:10.1121/1.5101734.

Yves, S.; Ni, X.; Alù, A. Topological sound in two dimensions. Annals of the New York Academy of Sciences 2022, 1517, 63-77, doi:https://doi.org/10.1111/nyas.14885.

Cselyuszka, N.; Alù, A.; Janković, N. Spoof-Fluid-Spoof Acoustic Waveguide and its Applications for Sound Manipulation. Physical Review Applied 2019, 12, 054014, doi:10.1103/PhysRevApplied.12.054014.

Wu, F.; Liu, Z.; Liu, Y. Acoustic band gaps created by rotating square rods in a two-dimensional lattice. Physical Review E 2002, 66, 046628, doi:10.1103/PhysRevE.66.046628.

Jia, Z.; Bao, Y.; Luo, Y.; Wang, D.; Zhang, X.; Kang, Z. Maximizing acoustic band gap in phononic crystals via topology optimization. International Journal of Mechanical Sciences 2024, 270, 109107, doi:https://doi.org/10.1016/j.ijmecsci.2024.109107.

Zhang, X.; Li, W.; Zeng, Z.; Wang, Z. Simple broadband planar acoustic lenses design with a velocity gradient structure. Applied Acoustics 2024, 217, 109832, doi:https://doi.org/10.1016/j.apacoust.2023.109832.

Zhang, H.; He, J.; Liu, C.; Ma, F. A wideband acoustic cloak based on radar cross section reduction and sound absorption. Applied Acoustics 2023, 213, 109639, doi:https://doi.org/10.1016/j.apacoust.2023.109639.

Zhang, H.; Li, R.; Bao, Y.; Liu, X.; Zhang, Y. Total acoustic transmission in a honeycomb network empowered by compact acoustic isolator. Scientific Reports 2023, 13, 828, doi:10.1038/s41598-023-28097-y.

Li, Y.; Huang, K.; Gong, M.; Sun, C.; Gao, S.; Lai, Y.; Liu, X. Realization of acoustic tunable logic gate composed of soft materials. Results in Physics 2024, 57, 107421, doi:https://doi.org/10.1016/j.rinp.2024.107421.

Kabir, M.; Kazari, H.; Ozevin, D. Piezoelectric MEMS acoustic emission sensors. Sensors and Actuators A: Physical 2018, 279, 53-64, doi:https://doi.org/10.1016/j.sna.2018.05.044.

Esfahlani, H.; Byrne, M.S.; McDermott, M.; Alù, A. Acoustic Supercoupling in a Zero-Compressibility Waveguide. Research 2019, doi:10.34133/2019/2457870.

Chen, C.; Chen, T.; Ding, W.; Yang, F.; Zhu, J.; Yao, J. Impurity-induced multi-bit acoustic topological system. International Journal of Mechanical Sciences 2023, 247, 108183, doi:https://doi.org/10.1016/j.ijmecsci.2023.108183.

Abily, T.; Regnard, J.; Gabard, G.; Durand, S. Non-linear effects in thin slits for low frequency sound absorption. Journal of Sound and Vibration 2023, 546, 117432, doi:https://doi.org/10.1016/j.jsv.2022.117432.

Pan, S.; You, R.; Chen, X.; Pan, W.; Li, Q.; Chen, X.; Pang, W.; Duan, X. Regulating Biomolecular Surface Interactions Using Tunable Acoustic Streaming. ACS Sensors 2023, 8, 3458-3467, doi:10.1021/acssensors.3c00982.

Kosmas, L.T.; Ortwin, H. Slow and stopped light in metamaterials: the trapped rainbow. In Proceedings of the Proc.SPIE, 2008; p. 698702.

Zhong, Z.; Liu, T.; Wu, H.; Qiu, J.; Du, B.; Yin, G.; Zhu, T. High-spatial-resolution distributed acoustic sensor based on the time-frequency-multiplexing OFDR. Opt. Lett. 2023, 48, 5803-5806, doi:10.1364/OL.501253.

Tian, Y.-Z.; Tang, X.-L.; Wang, Y.-F.; Laude, V.; Wang, Y.-S. Annular acoustic impedance metasurfaces for encrypted information storage. Physical Review Applied 2023, 20, 044053, doi:10.1103/PhysRevApplied.20.044053.

Gao, N.; Wu, J.H.; Yu, L.; Hou, H. Ultralow frequency acoustic bandgap and vibration energy recovery in tetragonal folding beam phononic crystal. International Journal of Modern Physics B 2016, 30, 1650111, doi:10.1142/S0217979216501113.

Ghaderian, P.; Habibzadeh-Sharif, A. Rainbow trapping and releasing in graded grating graphene plasmonic waveguides. Opt. Express 2021, 29, 3996-4009, doi:10.1364/OE.414982.

Hussein, M.; Hameed, M.F.O.; Areed, N.F.F.; Yahia, A.; Obayya, S.S.A. Funnel-shaped silicon nanowire for highly efficient light trapping. Opt. Lett. 2016, 41, 1010-1013, doi:10.1364/OL.41.001010.

Xu, J.; Xiao, S.; He, P.; Wang, Y.; Shen, Y.; Hong, L.; Luo, Y.; He, B. Realization of broadband truly rainbow trapping in gradient-index metamaterials. Opt. Express 2022, 30, 3941-3953, doi:10.1364/OE.447874.

Xu, Z.; Shi, J.; Davis, R.J.; Yin, X.; Sievenpiper, D.F. Rainbow Trapping with Long Oscillation Lifetimes in Gradient Magnetoinductive Metasurfaces. Physical Review Applied 2019, 12, 024043, doi:10.1103/PhysRevApplied.12.024043.

Liu, T.; Liang, S.; Chen, F.; Zhu, J. Inherent losses induced absorptive acoustic rainbow trapping with a gradient metasurface. Journal of Applied Physics 2017, 123, 091702, doi:10.1063/1.4997631.

Xu, J.; He, P.; Feng, D.; Yong, K.; Hong, L.; Shen, Y.; Zhou, Y. Slow wave and truly rainbow trapping in a one-way terahertz waveguide. Opt. Express 2021, 29, 11328-11341, doi:10.1364/OE.422274.

Liu, K.; He, S. Truly trapped rainbow by utilizing nonreciprocal waveguides. Scientific Reports 2016, 6, 30206, doi:10.1038/srep30206.

Sharma, S.; Mondal, A.; Das, R. Infrared rainbow trapping via optical Tamm modes in an one-dimensional dielectric chirped photonic crystals. Opt. Lett. 2021, 46, 4566-4569, doi:10.1364/OL.437958.

Baba, T.; Mori, D.; Inoshita, K.; Kuroki, Y. Light localizations in photonic crystal line defect waveguides. IEEE Journal of Selected Topics in Quantum Electronics 2004, 10, 484-491, doi:10.1109/JSTQE.2004.829201.

Wu, L.-H.; Hu, X. Scheme for Achieving a Topological Photonic Crystal by Using Dielectric Material. Physical Review Letters 2015, 114, 223901, doi:10.1103/PhysRevLett.114.223901.

He, C.; Ni, X.; Ge, H.; Sun, X.-C.; Chen, Y.-B.; Lu, M.-H.; Liu, X.-P.; Chen, Y.-F. Acoustic topological insulator and robust one-way sound transport. Nature Physics 2016, 12, 1124-1129, doi:10.1038/nphys3867.

Downloads

Published

26-03-2024

Issue

Section

Articles

How to Cite

Rainbow Capture Based on Underwater Gradient Phononic Crystals. (2024). Academic Journal of Science and Technology, 10(1), 56-61. https://doi.org/10.54097/p9gfc260

Similar Articles

1-10 of 217

You may also start an advanced similarity search for this article.