DNA Information Storage and Cryptography System

Authors

  • Zeping Zhang
  • Zhihao Zhang

DOI:

https://doi.org/10.54097/73ep7z05

Keywords:

DNA information storage; DNA synthesis; DNA preservation; DNA sequencing; DNA cryptography.

Abstract

With the development of information technology, the global data volume is growing exponentially. In order to alleviate the contradiction between massive data and traditional storage technology, people begin to seek for a new generation of storage media. As a carrier of genetic information, DNA has the characteristics of high information density, long storage life and low maintenance cost, which can effectively overcome the deficiency of traditional storage media. With the development of DNA synthesis and DNA sequencing technology, DNA data storage technology has attracted more and more attention, and a series of major breakthroughs have been made. In this paper, with the workflow of DNA data storage as the main line, expounds the basic theory of DNA data storage and related technology, mainly introduced the research progress of DNA storage method and strategy, briefly summarizes the latest research results of DNA data cryptography, and finally discussed the major challenges that DNA data storage technology is facing , especially, DNA synthesis efficiency, DNA sequencing time cost and DNA data cryptography will be an important research direction of DNA storage technology in the future. It is believed that with the deepening of the data storage research on DNA, DNA data storage will become the most potential new storage method in the future, and can be a practical application in the future.

Downloads

Download data is not yet available.

References

Rydning D R J G J, Reinsel J, Gantz J. The Digitization of the World from Edge to Core[J]. Framingham: International Data Corporation, 2018, 16: 1-28.

Zhirnov, V.; Zadegan, R.M.; Sandhu, G.S.; Church, G.M.; Hughes, W.L. Nucleic Acid Memory. Nature Materials 2016, 15, 366–370.

D. Carmean; L. Ceze; G. Seelig; K. Stewart; K. Strauss; M. Willsey DNA Data Storage and Hybrid Molecular–Electronic Computing. Proceedings of the IEEE 2019, 107, 63–72.

K. Goda; M. Kitsuregawa The History of Storage Systems. Proceedings of the IEEE 2012, 100, 1433–1440.

Bhat, W.A. Bridging Data-Capacity Gap in Big Data Storage. Future Generation Computer Systems 2018, 87, 538–548.

Williams, E.D.; Ayres, R.U.; Heller, M. The 1.7 Kilogram Microchip: Energy and Material Use in the Production of Semiconductor Devices. Environ. Sci. Technol. 2002, 36, 5504–5510.

Andrae, A.S.G.; Edler, T. On Global Electricity Usage of Communication Technology: Trends to 2030. Challenges 2015, 6, 117–157.

Neidle, S.; Sanderson, M. Chapter 2 - The Building Blocks of DNA and RNA. In Principles of Nucleic Acid Structure (Second Edition); Neidle, S., Sanderson, M., Eds.; Academic Press: New York, 2022; pp. 29–51.

Takahashi, C.N.; Nguyen, B.H.; Strauss, K.; Ceze, L. Demonstration of End-to-End Automation of DNA Data Storage. Scientific Reports 2019, 9, 4998.

Organick, L.; Ang, S.D.; Chen, Y.-J.; Lopez, R.; Yekhanin, S.; Makarychev, K.; Racz, M.Z.; Kamath, G.; Gopalan, P.; Nguyen, B.; et al. Random Access in Large-Scale DNA Data Storage. Nature Biotechnology 2018, 36, 242–248.

Ceze, L.; Nivala, J.; Strauss, K. Molecular Digital Data Storage Using DNA. Nature Reviews Genetics 2019, 20, 456–466.

Fei, Z.; Gupta, N.; Li, M.; Xiao, P.; Hu, X. Toward Highly Effective Loading of DNA in Hydrogels for High-Density and Long-Term Information Storage. Science Advances 9, eadg9933.

Church, G.M.; Gao, Y.; Kosuri, S. Next-Generation Digital Information Storage in DNA. Science 2012, 337, 1628–1628.

Allentoft, M.E.; Collins, M.; Harker, D.; Haile, J.; Oskam, C.L.; Hale, M.L.; Campos, P.F.; Samaniego, J.A.; Gilbert, M.T.P.; Willerslev, E.; et al. The Half-Life of DNA in Bone: Measuring Decay Kinetics in 158 Dated Fossils. Proceedings: Biological Sciences 2012, 279, 4724–4733.

Dabney, J.; Knapp, M.; Glocke, I.; Gansauge, M.-T.; Weihmann, A.; Nickel, B.; Valdiosera, C.; García, N.; Pääbo, S.; Arsuaga, J.-L.; et al. Complete Mitochondrial Genome Sequence of a Middle Pleistocene Cave Bear Reconstructed from Ultrashort DNA Fragments. Proceedings of the National Academy of Sciences 2013, 110, 15758–15763.

Kennedy, E.; Arcadia, C.E.; Geiser, J.; Weber, P.M.; Rose, C.; Rubenstein, B.M.; Rosenstein, J.K. Encoding Information in Synthetic Metabolomes. PLOS ONE 2019, 14, e0217364.

Cafferty, B.J.; Ten, A.S.; Fink, M.J.; Morey, S.; Preston, D.J.; Mrksich, M.; Whitesides, G.M. Storage of Information Using Small Organic Molecules. ACS Cent. Sci. 2019, 5, 911–916.

Ng, C.C.A.; Tam, W.M.; Yin, H.; Wu, Q.; So, P.-K.; Wong, M.Y.-M.; Lau, F.C.M.; Yao, Z.-P. Data Storage Using Peptide Sequences. Nature Communications 2021, 12, 4242.

Lee, W.; Zhou, Z.; Chen, X.; Qin, N.; Jiang, J.; Liu, K.; Liu, M.; Tao, T.H.; Li, W. A Rewritable Optical Storage Medium of Silk Proteins Using Near-Field Nano-Optics. Nature Nanotechnology 2020, 15, 941–947.

Mayer, C.; McInroy, G.R.; Murat, P.; Van Delft, P.; Balasubramanian, S. An Epigenetics-Inspired DNA-Based Data Storage System. Angewandte Chemie International Edition 2016, 55, 11144–11148.

Larkin, J.; Henley, R.Y.; Jadhav, V.; Korlach, J.; Wanunu, M. Length-Independent DNA Packing into Nanopore Zero-Mode Waveguides for Low-Input DNA Sequencing. Nature Nanotechnology 2017, 12, 1169–1175.

Völler, J.-S. Enhancing DNA Sequencing. Nature Catalysis 2018, 1, 481–481.

Chen, Z.; Zhou, W.; Qiao, S.; Kang, L.; Duan, H.; Xie, X.S.; Huang, Y. Highly Accurate Fluorogenic DNA Sequencing with Information Theory–Based Error Correction. Nature Biotechnology 2017, 35, 1170–1178.

Nawy, T. Sequencing DNA, No Mistake. Nature Methods 2018, 15, 12–13.

Green, E.D.; Rubin, E.M.; Olson, M.V. The Future of DNA Sequencing. Nature 2017, 550, 179–181.

Maxam, A.M.; Gilbert, W. A New Method for Sequencing DNA. Proceedings of the National Academy of Sciences 1977, 74, 560–564.

Lim, C.K.; Nirantar, S.; Yew, W.S.; Poh, C.L. Novel Modalities in DNA Data Storage. Trends in Biotechnology 2021, 39, 990–1003.

Doricchi, A.; Platnich, C.M.; Gimpel, A.; Horn, F.; Earle, M.; Lanzavecchia, G.; Cortajarena, A.L.; Liz-Marzán, L.M.; Liu, N.; Heckel, R.; et al. Emerging Approaches to DNA Data Storage: Challenges and Prospects. ACS Nano 2022, 16, 17552–17571.

Dong, Y.; Sun, F.; Ping, Z.; Ouyang, Q.; Qian, L. DNA Storage: Research Landscape and Future Prospects. National Science Review 2020, 7, 1092–1107.

Matange, K.; Tuck, J.M.; Keung, A.J. DNA Stability: A Central Design Consideration for DNA Data Storage Systems. Nature Communications 2021, 12, 1358.

Meiser, L.C.; Nguyen, B.H.; Chen, Y.-J.; Nivala, J.; Strauss, K.; Ceze, L.; Grass, R.N. Synthetic DNA Applications in Information Technology. Nature Communications 2022, 13, 352.

Koch, J.; Gantenbein, S.; Masania, K.; Stark, W.J.; Erlich, Y.; Grass, R.N. A DNA-of-Things Storage Architecture to Create Materials with Embedded Memory. Nature Biotechnology 2020, 38, 39–43.

Tomek, K.J.; Volkel, K.; Indermaur, E.W.; Tuck, J.M.; Keung, A.J. Promiscuous Molecules for Smarter File Operations in DNA-Based Data Storage. Nature Communications 2021, 12, 3518.

Kim, J.; Bae, J.H.; Baym, M.; Zhang, D.Y. Metastable Hybridization-Based DNA Information Storage to Allow Rapid and Permanent Erasure. Nature Communications 2020, 11, 5008.

Xu, C.; Ma, B.; Gao, Z.; Dong, X.; Zhao, C.; Liu, H. Electrochemical DNA Synthesis and Sequencing on a Single Electrode with Scalability for Integrated Data Storage. Science Advances 7, eabk0100.

Lee, H.H.; Kalhor, R.; Goela, N.; Bolot, J.; Church, G.M. Terminator-Free Template-Independent Enzymatic DNA Synthesis for Digital Information Storage. Nature Communications 2019, 10, 2383.

Lee, H.; Wiegand, D.J.; Griswold, K.; Punthambaker, S.; Chun, H.; Kohman, R.E.; Church, G.M. Photon-Directed Multiplexed Enzymatic DNA Synthesis for Molecular Digital Data Storage. Nature Communications 2020, 11, 5246.

Kubista, M.; Andrade, J.M.; Bengtsson, M.; Forootan, A.; Jonák, J.; Lind, K.; Sindelka, R.; Sjöback, R.; Sjögreen, B.; Strömbom, L.; et al. The Real-Time Polymerase Chain Reaction. Molecular Aspects of Medicine 2006, 27, 95–125.

Ralec, C.; Henry, E.; Lemor, M.; Killelea, T.; Henneke, G. Calcium-Driven DNA Synthesis by a High-Fidelity DNA Polymerase. Nucleic Acids Research 2017, 45, 12425–12440.

Kishi, J.Y.; Schaus, T.E.; Gopalkrishnan, N.; Xuan, F.; Yin, P. Programmable Autonomous Synthesis of Single-Stranded DNA. Nature Chemistry 2018, 10, 155–164.

Jiang, W.; Zhang, B.; Fan, C.; Wang, M.; Wang, J.; Deng, Q.; Liu, X.; Chen, J.; Zheng, J.; Liu, L.; et al. Mirror-Image Polymerase Chain Reaction. Cell Discovery 2017, 3, 17037.

Zhan, Y.; Zhang, J.; Yao, S.; Luo, G. High-Throughput Two-Dimensional Polymerase Chain Reaction Technology. Anal. Chem. 2020, 92, 674–682.

Heerema, S.J.; Dekker, C. Graphene Nanodevices for DNA Sequencing. Nature Nanotechnology 2016, 11, 127–136.

Sadremomtaz, A.; Glass, R.F.; Guerrero, J.E.; LaJeunesse, D.R.; Josephs, E.A.; Zadegan, R. Digital Data Storage on DNA Tape Using CRISPR Base Editors. Nature Communications 2023, 14, 6472.

Lin, K.N.; Volkel, K.; Tuck, J.M.; Keung, A.J. Dynamic and Scalable DNA-Based Information Storage. Nature Communications 2020, 11, 2981.

Song, L.; Geng, F.; Gong, Z.-Y.; Chen, X.; Tang, J.; Gong, C.; Zhou, L.; Xia, R.; Han, M.-Z.; Xu, J.-Y.; et al. Robust Data Storage in DNA by de Bruijn Graph-Based de Novo Strand Assembly. Nature Communications 2022, 13, 5361.

Heckel, R.; Mikutis, G.; Grass, R.N. A Characterization of the DNA Data Storage Channel. Scientific Reports 2019, 9, 9663.

Li, M.; Wu, J.; Dai, J.; Jiang, Q.; Qu, Q.; Huang, X.; Wang, Y. A Self-Contained and Self-Explanatory DNA Storage System. Scientific Reports 2021, 11, 18063.

Dey, S.; Fan, C.; Gothelf, K.V.; Li, J.; Lin, C.; Liu, L.; Liu, N.; Nijenhuis, M.A.D.; Saccà, B.; Simmel, F.C.; et al. DNA Origami. Nature Reviews Methods Primers 2021, 1, 13.

Dickinson, G.D.; Mortuza, G.M.; Clay, W.; Piantanida, L.; Green, C.M.; Watson, C.; Hayden, E.J.; Andersen, T.; Kuang, W.; Graugnard, E.; et al. An Alternative Approach to Nucleic Acid Memory. Nature Communications 2021, 12, 2371.

Nguyen, B.H.; Takahashi, C.N.; Gupta, G.; Smith, J.A.; Rouse, R.; Berndt, P.; Yekhanin, S.; Ward, D.P.; Ang, S.D.; Garvan, P.; et al. Scaling DNA Data Storage with Nanoscale Electrode Wells. Science Advances 7, eabi6714.

Meiser, L.C.; Antkowiak, P.L.; Koch, J.; Chen, W.D.; Kohll, A.X.; Stark, W.J.; Heckel, R.; Grass, R.N. Reading and Writing Digital Data in DNA. Nature Protocols 2020, 15, 86–101.

Yan, Y.; Pinnamaneni, N.; Chalapati, S.; Crosbie, C.; Appuswamy, R. Scaling Logical Density of DNA Storage with Enzymatically-Ligated Composite Motifs. Scientific Reports 2023, 13, 15978.

D. A. Huffman A Method for the Construction of Minimum-Redundancy Codes. Proceedings of the IRE 1952, 40, 1098–1101.

Goldman, N.; Bertone, P.; Chen, S.; Dessimoz, C.; LeProust, E.M.; Sipos, B.; Birney, E. Towards Practical, High-Capacity, Low-Maintenance Information Storage in Synthesized DNA. Nature 2013, 494, 77–80.

Chen, Y.-J.; Takahashi, C.N.; Organick, L.; Bee, C.; Ang, S.D.; Weiss, P.; Peck, B.; Seelig, G.; Ceze, L.; Strauss, K. Quantifying Molecular Bias in DNA Data Storage. Nature Communications 2020, 11, 3264.

G. Solomon Self-Synchronizing Reed-Solomon Codes (Corresp.). IEEE Transactions on Information Theory 1968, 14, 608–609.

Welzel, M.; Schwarz, P.M.; Löchel, H.F.; Kabdullayeva, T.; Clemens, S.; Becker, A.; Freisleben, B.; Heider, D. DNA-Aeon Provides Flexible Arithmetic Coding for Constraint Adherence and Error Correction in DNA Storage. Nature Communications 2023, 14, 628.

Gimpel, A.L.; Stark, W.J.; Heckel, R.; Grass, R.N. A Digital Twin for DNA Data Storage Based on Comprehensive Quantification of Errors and Biases. Nature Communications 2023, 14, 6026.

Grass, R.N.; Heckel, R.; Puddu, M.; Paunescu, D.; Stark, W.J. Robust Chemical Preservation of Digital Information on DNA in Silica with Error-Correcting Codes. Angewandte Chemie International Edition 2015, 54, 2552–2555.

Ping, Z.; Chen, S.; Zhou, G.; Huang, X.; Zhu, S.J.; Zhang, H.; Lee, H.H.; Lan, Z.; Cui, J.; Chen, T.; et al. Towards Practical and Robust DNA-Based Data Archiving Using the Yin–Yang Codec System. Nature Computational Science 2022, 2, 234–242.

Anavy, L.; Vaknin, I.; Atar, O.; Amit, R.; Yakhini, Z. Data Storage in DNA with Fewer Synthesis Cycles Using Composite DNA Letters. Nature Biotechnology 2019, 37, 1229–1236.

MacKay, D.J.C. Fountain Codes. IEE Proceedings - Communications 2005, 152, 1062-1068(6).

Erlich, Y.; Zielinski, D. DNA Fountain Enables a Robust and Efficient Storage Architecture. Science 2017, 355, 950–954.

WATSON, J.D.; CRICK, F.H.C. Molecular Structure of Nucleic Acids: A Structure for Deoxyribose Nucleic Acid. Nature 1974, 248, 765–765.

Lin, Xi. Oligodeoxynucleotide Synthesis Using Protecting Groups and a Linker Cleavable under Non-Nucleophilic Conditions, Dissertation, Michigan Technological University, 2013.

Beaucage, S.L.; Caruthers, M.H. Deoxynucleoside Phosphoramidites—A New Class of Key Intermediates for Deoxypolynucleotide Synthesis. Tetrahedron Letters 1981, 22, 1859–1862.

Palluk, S.; Arlow, D.H.; de Rond, T.; Barthel, S.; Kang, J.S.; Bector, R.; Baghdassarian, H.M.; Truong, A.N.; Kim, P.W.; Singh, A.K.; et al. De Novo DNA Synthesis Using Polymerase-Nucleotide Conjugates. Nature Biotechnology 2018, 36, 645–650.

Kosuri, S.; Church, G.M. Large-Scale de Novo DNA Synthesis: Technologies and Applications. Nature Methods 2014, 11, 499–507.

LeProust, E.M.; Peck, B.J.; Spirin, K.; McCuen, H.B.; Moore, B.; Namsaraev, E.; Caruthers, M.H. Synthesis of High-Quality Libraries of Long (150mer) Oligonucleotides by a Novel Depurination Controlled Process. Nucleic Acids Research 2010, 38, 2522–2540.

Jensen, M.A.; Davis, R.W. Template-Independent Enzymatic Oligonucleotide Synthesis (TiEOS): Its History, Prospects, and Challenges. Biochemistry 2018, 57, 1821–1832.

Yoo, E.; Choe, D.; Shin, J.; Cho, S.; Cho, B.-K. Mini Review: Enzyme-Based DNA Synthesis and Selective Retrieval for Data Storage. Computational and Structural Biotechnology Journal 2021, 19, 2468–2476.

Baoutina, A.; Bhat, S.; Partis, L.; Emslie, K.R. Storage Stability of Solutions of DNA Standards. Anal. Chem. 2019, 91, 12268–12274.

Bonnet, J.; Colotte, M.; Coudy, D.; Couallier, V.; Portier, J.; Morin, B.; Tuffet, S. Chain and Conformation Stability of Solid-State DNA: Implications for Room Temperature Storage. Nucleic Acids Research 2010, 38, 1531–1546.

Deagle, B.E.; Eveson, J.P.; Jarman, S.N. Quantification of Damage in DNA Recovered from Highly Degraded Samples – a Case Study on DNA in Faeces. Frontiers in Zoology 2006, 3, 11.

Newman, S.; Stephenson, A.P.; Willsey, M.; Nguyen, B.H.; Takahashi, C.N.; Strauss, K.; Ceze, L. High Density DNA Data Storage Library via Dehydration with Digital Microfluidic Retrieval. Nature Communications 2019, 10, 1706.

van der Valk, T.; Pečnerová, P.; Díez-del-Molino, D.; Bergström, A.; Oppenheimer, J.; Hartmann, S.; Xenikoudakis, G.; Thomas, J.A.; Dehasque, M.; Sağlıcan, E.; et al. Million-Year-Old DNA Sheds Light on the Genomic History of Mammoths. Nature 2021, 591, 265–269.

Chatterjee, N.; Walker, G.C. Mechanisms of DNA Damage, Repair, and Mutagenesis. Environmental and Molecular Mutagenesis 2017, 58, 235–263.

Liu, X.; Jing, X.; Liu, P.; Pan, M.; Liu, Z.; Dai, X.; Lin, J.; Li, Q.; Wang, F.; Yang, S.; et al. DNA Framework-Encoded Mineralization of Calcium Phosphate. Chem 2020, 6, 472–485.

Paunescu, D.; Fuhrer, R.; Grass, R.N. Protection and Deprotection of DNA—High-Temperature Stability of Nucleic Acid Barcodes for Polymer Labeling. Angewandte Chemie International Edition 2013, 52, 4269–4272.

Puddu, M.; Paunescu, D.; Stark, W.J.; Grass, R.N. Magnetically Recoverable, Thermostable, Hydrophobic DNA/Silica Encapsulates and Their Application as Invisible Oil Tags. ACS Nano 2014, 8, 2677–2685.

Kohll, A.X.; Antkowiak, P.L.; Chen, W.D.; Nguyen, B.H.; Stark, W.J.; Ceze, L.; Strauss, K.; Grass, R.N. Stabilizing Synthetic DNA for Long-Term Data Storage with Earth Alkaline Salts. Chem. Commun. 2020, 56, 3613–3616.

Lau, B.; Chandak, S.; Roy, S.; Tatwawadi, K.; Wootters, M.; Weissman, T.; Ji, H.P. Magnetic DNA Random Access Memory with Nanopore Readouts and Exponentially-Scaled Combinatorial Addressing. Scientific Reports 2023, 13, 8514.

Sanger, F.; Nicklen, S.; Coulson, A.R. DNA Sequencing with Chain-Terminating Inhibitors. Proceedings of the National Academy of Sciences 1977, 74, 5463–5467.

Rodriguez, R.; Krishnan, Y. The Chemistry of Next-Generation Sequencing. Nature Biotechnology 2023.

Yeom, H.; Lee, Y.; Ryu, T.; Noh, J.; Lee, A.C.; Lee, H.-B.; Kang, E.; Song, S.W.; Kwon, S. Barcode-Free next-Generation Sequencing Error Validation for Ultra-Rare Variant Detection. Nature Communications 2019, 10, 977.

Yasumoto, S.; Muranaka, T. Foreign DNA Detection in Genome-Edited Potatoes by High-Throughput Sequencing. Scientific Reports 2023, 13, 12246.

Javed, N.; Farjoun, Y.; Fennell, T.J.; Epstein, C.B.; Bernstein, B.E.; Shoresh, N. Detecting Sample Swaps in Diverse NGS Data Types Using Linkage Disequilibrium. Nature Communications 2020, 11, 3697.

Teng, C.-F.; Huang, H.-Y.; Li, T.-C.; Shyu, W.-C.; Wu, H.-C.; Lin, C.-Y.; Su, I.-J.; Jeng, L.-B. A Next-Generation Sequencing-Based Platform for Quantitative Detection of Hepatitis B Virus Pre-S Mutants in Plasma of Hepatocellular Carcinoma Patients. Scientific Reports 2018, 8, 14816.

Chen, P.-C.; Yin, J.; Yu, H.-W.; Yuan, T.; Fernandez, M.; Yung, C.K.; Trinh, Q.M.; Peltekova, V.D.; Reid, J.G.; Tworog-Dube, E.; et al. Next-Generation Sequencing Identifies Rare Variants Associated with Noonan Syndrome. Proceedings of the National Academy of Sciences 2014, 111, 11473–11478.

de Masson, A.; O’Malley, J.T.; Elco, C.P.; Garcia, S.S.; Divito, S.J.; Lowry, E.L.; Tawa, M.; Fisher, D.C.; Devlin, P.M.; Teague, J.E.; et al. High-Throughput Sequencing of the T Cell Receptor β Gene Identifies Aggressive Early-Stage Mycosis Fungoides. Science Translational Medicine 2018, 10, eaar5894.

Clarke, J.; Wu, H.-C.; Jayasinghe, L.; Patel, A.; Reid, S.; Bayley, H. Continuous Base Identification for Single-Molecule Nanopore DNA Sequencing. Nature Nanotechnology 2009, 4, 265–270.

Eid, J.; Fehr, A.; Gray, J.; Luong, K.; Lyle, J.; Otto, G.; Peluso, P.; Rank, D.; Baybayan, P.; Bettman, B.; et al. Real-Time DNA Sequencing from Single Polymerase Molecules. Science 2009, 323, 133–138.

Chin, C.-S.; Peluso, P.; Sedlazeck, F.J.; Nattestad, M.; Concepcion, G.T.; Clum, A.; Dunn, C.; O’Malley, R.; Figueroa-Balderas, R.; Morales-Cruz, A.; et al. Phased Diploid Genome Assembly with Single-Molecule Real-Time Sequencing. Nature Methods 2016, 13, 1050–1054.

Flusberg, B.A.; Webster, D.R.; Lee, J.H.; Travers, K.J.; Olivares, E.C.; Clark, T.A.; Korlach, J.; Turner, S.W. Direct Detection of DNA Methylation during Single-Molecule, Real-Time Sequencing. Nature Methods 2010, 7, 461–465.

Ying, Y.-L.; Hu, Z.-L.; Zhang, S.; Qing, Y.; Fragasso, A.; Maglia, G.; Meller, A.; Bayley, H.; Dekker, C.; Long, Y.-T. Nanopore-Based Technologies beyond DNA Sequencing. Nature Nanotechnology 2022, 17, 1136–1146.

Koch, C.; Reilly-O’Donnell, B.; Gutierrez, R.; Lucarelli, C.; Ng, F.S.; Gorelik, J.; Ivanov, A.P.; Edel, J.B. Nanopore Sequencing of DNA-Barcoded Probes for Highly Multiplexed Detection of microRNA, Proteins and Small Biomarkers. Nature Nanotechnology 2023.

Plesa, C.; Verschueren, D.; Pud, S.; van der Torre, J.; Ruitenberg, J.W.; Witteveen, M.J.; Jonsson, M.P.; Grosberg, A.Y.; Rabin, Y.; Dekker, C. Direct Observation of DNA Knots Using a Solid-State Nanopore. Nature Nanotechnology 2016, 11, 1093–1097.

Lopez, R.; Chen, Y.-J.; Dumas Ang, S.; Yekhanin, S.; Makarychev, K.; Racz, M.Z.; Seelig, G.; Strauss, K.; Ceze, L. DNA Assembly for Nanopore Data Storage Readout. Nature Communications 2019, 10, 2933.

Liu, Y.; Ren, J.; Qin, Y.; Li, J.; Liu, J.; Wang, E. An Aptamer-Based Keypad Lock System. Chem. Commun. 2012, 48, 802–804.

Meiser, L.C.; Gimpel, A.L.; Deshpande, T.; Libort, G.; Chen, W.D.; Heckel, R.; Nguyen, B.H.; Strauss, K.; Stark, W.J.; Grass, R.N. Information Decay and Enzymatic Information Recovery for DNA Data Storage. Communications Biology 2022, 5, 1117.

Purcell, O.; Wang, J.; Siuti, P.; Lu, T.K. Encryption and Steganography of Synthetic Gene Circuits. Nature Communications 2018, 9, 4942.

Zheng, L.L.; Li, J.Z.; Wen, M.; Xi, D.; Zhu, Y.; Wei, Q.; Zhang, X.-B.; Ke, G.; Xia, F.; Gao, Z.F. Enthalpy and Entropy Synergistic Regulation–Based Programmable DNA Motifs for Biosensing and Information Encryption. Science Advances 9, eadf5868.

Meiser, L.C.; Koch, J.; Antkowiak, P.L.; Stark, W.J.; Heckel, R.; Grass, R.N. DNA Synthesis for True Random Number Generation. Nature Communications 2020, 11, 5869.

Clelland, C.T.; Risca, V.; Bancroft, C. Hiding Messages in DNA Microdots. Nature 1999, 399, 533–534.

Zhang, Y.; Wang, F.; Chao, J.; Xie, M.; Liu, H.; Pan, M.; Kopperger, E.; Liu, X.; Li, Q.; Shi, J.; et al. DNA Origami Cryptography for Secure Communication. Nature Communications 2019, 10, 5469.

Grass, R.N.; Heckel, R.; Dessimoz, C.; Stark, W.J. Genomic Encryption of Digital Data Stored in Synthetic DNA. Angewandte Chemie International Edition 2020, 59, 8476–8480.

Zhang, Y.; Yin, X.; Cui, C.; He, K.; Wang, F.; Chao, J.; Li, T.; Zuo, X.; Li, A.; Wang, L.; et al. Prime Factorization via Localized Tile Assembly in a DNA Origami Framework. Science Advances 9, eadf8263.

Downloads

Published

26-03-2024

Issue

Section

Articles

How to Cite

DNA Information Storage and Cryptography System. (2024). Academic Journal of Science and Technology, 10(1), 243-249. https://doi.org/10.54097/73ep7z05

Similar Articles

1-10 of 248

You may also start an advanced similarity search for this article.