A Review of Point Cloud Alignment Methods and Their Applications

Authors

  • Jing Wu
  • Mingchuan Zhang

DOI:

https://doi.org/10.54097/jg0q5p11

Keywords:

Point Cloud Alignment; Local Geometric Features; Cross-source Point Cloud Data.

Abstract

Point cloud alignment is a key technique in the field of computer vision, which involves estimating the transformation between two-point clouds. With the development of optimization methods and deep learning techniques, the robustness and efficiency of point cloud alignment have been significantly improved. Recent studies have combined these two methods to further optimize the performance. Meanwhile, advances in 3D sensing and 3D reconstruction techniques have given rise to the new research field of cross-source point cloud alignment. This paper reviews recent advances in point cloud alignment, including both homologous and cross-source alignment techniques, and explores the interconnection of optimization and deep learning techniques. In addition, the paper reviews relevant benchmark datasets and explores their applications in different domains. Finally, future research directions for point cloud alignment are also described.

Downloads

Download data is not yet available.

References

Besl, P. J., & McKay, N. D. (1992). A method for registration of 3-D shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence, 14(2), 239-256.

Rusu, R. B., & Cousins, S. (2011). 3D is here: Point Cloud Library (PCL). IEEE International Conference on Robotics and Automation (ICRA), Shanghai, China.

Zeng, A., Song, S., Nießner, M., Fisher, M., Xiao, J., & Funkhouser, T. (2017). 3DMatch: Learning the matching of local 3D geometry in range scans. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

Yi, K. M., Trulls, E., Lepetit, V., & Fua, P. (2016). Lift: Learned Invariant Feature Transform. European Conference on Computer Vision (ECCV).

Salvi, J., Matabosch, C., Fofi, D., & Forest, J. (2007). A review of recent range image registration methods with accuracy evaluation. Image and Vision Computing, 25(5), 578-596.

Rusinkiewicz, S., & Levoy, M. (2001). Efficient variants of the ICP algorithm. Third International Conference on 3D Digital Imaging and Modeling (3DIM).

Newcombe, R. A., Izadi, S., Hilliges, O., Molyneaux, D., Kim, D., Davison, A. J., Kohi, P., Shotton, J., Hodges, S., & Fitzgibbon, A. (2011). KinectFusion: Real-time dense surface mapping and tracking. IEEE ISMAR.

Qi, C. R., Su, H., Mo, K., & Guibas, L. J. (2017). PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

Guo, Y., Wang, H., Hu, Q., Liu, H., Liu, L., & Bennamoun, M. (2020). Deep learning for 3D point clouds: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence.

Grisetti, G., Kümmerle, R., Stachniss, C., & Burgard, W. (2010). A tutorial on graph-based SLAM. IEEE Intelligent Transportation Systems Magazine, 2(4), 31-43.

El-Hakim, S. F., Beraldin, J.-A., Picard, M., & Godin, G. (2004). Detailed 3D reconstruction of large-scale heritage sites with integrated techniques. IEEE Computer Graphics and Applications, 24(3), 21-29.

Zhang, Z. (1994). "Iterative point matching for registration of free-form curves and surfaces." International Journal of Computer Vision.

Chen, Y., & Medioni, G. (1991). "Object modelling by registration of multiple range images." Image and Vision Computing.

Fitzgibbon, A. W. (2003). "Robust registration of 2D and 3D point sets." Image and Vision Computing.

Lowe, D. G. (2004). "Distinctive Image Features from Scale-Invariant Keypoints." International Journal of Computer Vision.

Myronenko, A., & Song, X. (2010). "Point Set Registration: Coherent Point Drift." IEEE Transactions on Pattern Analysis and Machine Intelligence.

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). "ImageNet Classification with Deep Convolutional Neural Networks." Advances in Neural Information Processing Systems.

Hinton, G. E., Osindero, S., & Teh, Y. W. (2006). "A Fast Learning Algorithm for Deep Belief Nets." Neural Computation.

Qi, C. R., Su, H., Mo, K., & Guibas, L. J. (2017). "PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

Rusinkiewicz S, Levoy M. Efficient variants of the ICP algorithm[C]//Proceedings third international conference on 3-D digital imaging and modeling. IEEE, 2001: 145-152.

Chetverikov D, Svirko D, Stepanov D, et al. The trimmed iterative closest point algorithm[C]//2002 International Conference on Pattern Recognition. IEEE, 2002, 3: 545-548.

Granger S, Pennec X. Multi-scale EM-ICP: A fast and robust approach for surface registration[C]//Computer Vision—ECCV 2002: 7th European Conference on Computer Vision Copenhagen, Denmark, May 28–31, 2002 Proceedings, Part IV 7. Springer Berlin Heidelberg, 2002: 418-432.

Segal A, Haehnel D, Thrun S. Generalized-icp[C]//Robotics: science and systems. 2009, 2(4): 435.

Myronenko A, Song X. Point set registration: Coherent point drift[J]. IEEE transactions on pattern analysis and machine intelligence, 2010, 32(12): 2262-2275.

Bergström P, Edlund O. Robust surface registration for optical single-shot measurements[J]. Computational Methods for Shape Verification of Free-Form Surfaces, 2011: 95.

Zhou Q Y, Park J, Koltun V. Fast global registration [C]// Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11-14, 2016, Proceedings, Part II 14. Springer International Publishing, 2016: 766-782.

Rusu R B, Blodow N, Beetz M. Fast point feature histograms (FPFH) for 3D registration[C]//2009 IEEE international conference on robotics and automation. IEEE, 2009: 3212-3217.

Tombari F, Salti S, Di Stefano L. Unique signatures of histograms for local surface description[C]//Computer Vision–ECCV 2010: 11th European Conference on Computer Vision, Heraklion, Crete, Greece, September 5-11, 2010, Proceedings, Part III 11. Springer Berlin Heidelberg, 2010: 356-369.

Johnson A E, Hebert M. Using spin images for efficient object recognition in cluttered 3D scenes[J]. IEEE Transactions on pattern analysis and machine intelligence, 1999, 21(5): 433-449.

Frome A, Huber D, Kolluri R, et al. Recognizing objects in range data using regional point descriptors[C]//Computer Vision-ECCV 2004: 8th European Conference on Computer Vision, Prague, Czech Republic, May 11-14, 2004. Proceedings, Part III 8. Springer Berlin Heidelberg, 2004: 224-237.

Zhong Y. Intrinsic shape signatures: A shape descriptor for 3D object recognition[C]//2009 IEEE 12th international conference on computer vision workshops, ICCV Workshops. IEEE, 2009: 689-696.

Guo Y, Sohel F, Bennamoun M, et al. Rotational projection statistics for 3D local surface description and object recognition[J]. International journal of computer vision, 2013, 105: 63-86.

Qi C R, Su H, Mo K, et al. Pointnet: Deep learning on point sets for 3d classification and segmentation[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2017: 652-660.

Qi C R, Yi L, Su H, et al. Pointnet++: Deep hierarchical feature learning on point sets in a metric space[J]. Advances in neural information processing systems, 2017, 30.

Wang Y, Solomon J M. Deep closest point: Learning representations for point cloud registration[C]//Proceedings of the IEEE/CVF international conference on computer vision. 2019: 3523-3532.

Lu W, Wan G, Zhou Y, et al. Deepvcp: An end-to-end deep neural network for point cloud registration[C]//Proceedings of the IEEE/CVF international conference on computer vision. 2019: 12-21.

Zhou Q Y, Park J, Koltun V. Fast global registration[C]//Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11-14, 2016, Proceedings, Part II 14. Springer International Publishing, 2016: 766-782..

Yew Z J, Lee G H. Rpm-net: Robust point matching using learned features[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2020: 11824-11833.

Bai X, Luo Z, Zhou L, et al. Pointdsc: Robust point cloud registration using deep spatial consistency[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021: 15859-15869.

Myronenko A, Song X. Point set registration: Coherent point drift[J]. IEEE transactions on pattern analysis and machine intelligence, 2010, 32(12): 2262-2275.

Gold S, Rangarajan A, Lu C P, et al. New algorithms for 2D and 3D point matching: Pose estimation and correspondence[J]. Pattern recognition, 1998, 31(8): 1019-1031.

Robinson E C, Jbabdi S, Glasser M F, et al. MSM: a new flexible framework for multimodal surface matching[J]. Neuroimage, 2014, 100: 414-426.

Hardoon D R, Shawe-Taylor J. Sparse canonical correlation analysis[J]. Machine Learning, 2011, 83: 331-353.

Segal A, Haehnel D, Thrun S. Generalized-icp[C]//Robotics: science and systems. 2009, 2(4): 435.

Downloads

Published

12-06-2024

Issue

Section

Articles

How to Cite

Wu, J., & Zhang, M. (2024). A Review of Point Cloud Alignment Methods and Their Applications. Academic Journal of Science and Technology, 11(2), 61-67. https://doi.org/10.54097/jg0q5p11