Design of MoO3 Porous Back Contact for High Efficiency CZTSSe Thin-film Solar Cells


  • Zhilu Zhang
  • Zhengjun Luo
  • Xudong Sun
  • Lin Ge
  • Yan Li



Cu2ZnSn (S, Se)4; Porous MoO3arrays; Anodization; Back Contact; Device.


The introduction of in-situ anodized MoO3 porous arrays with tailored structural parameters as the rear interface contact has a positive impact on enhancing the solar cell performance. The optimized device efficiency increased from 6.31% to 9.00% (in reference to molybdenum-based cells), resulting in a 32% increase in JSC and a 64% increase in FF. The results indicate that at a 10V oxidation voltage, the MoO3 pore size is relatively larger, facilitating the formation of a well-interpenetrating structure and contact interface with CZTSSe. In turn, assists in carrier interface separation and transfer, effectively suppressing the recombination of separated carriers. It extends carrier lifetime, reduces band tailing effects, and lowers urbach energy, thus improving the overall performance of CZTSSe devices.


Download data is not yet available.


Green M A, Dunlop E D, Hohl-Ebinger J, Yoshita M, Kopidakis N, Bothe K, Hinken D, Rauer M, Hao X. Solar cell efficiency tables (Version 60), Prog. Photovolt. 2022,30: 687–701.

Shockley W, Queisser H J. Detailed balance limit of efficiency of p‐n junction solar cells. J. Appl. Phys, 1961, 32: 10-519.

Nakamura M, Yamaguchi K, Kimoto Y, Yasaki Y, Kato T, Sugimoto H. Cd-free Cu (In,Ga)(Se,S)2 thin-film solar cell with record efficiency of 23.35%. IEEE J. Photovolt, 2019, 9: 1863-1867.

Liu X, Feng Y, Cui H, Liu F, Hao X, Conibeer G, Mitzi D B, Green M. The current status and future prospects of kesterite solar cells: a brief review. Prog. Photovoltaics Res. Appl., 2016,24: 879-898.

Chen S, Walsh A, Luo Y, Yang J H, Gong X G, Wei S H. Wurtzite-derived polytypes of kesterite and stannite quaternary chalcogenide semiconductors. Phys. Rev. B, 2010,82: 195203.

Zhong G, Tse K, Zhang Y, Li X, Huang L, Yang C, Zhu J, Zeng Z, Zhang Z, Xiao X. Induced effects by the substitution of Zn in Cu2ZnSnX4 (X=S and Se). Thin Solid Films, 2016,603: 224-229.

Gokmen T, Gunawan O, Todorov T K, Mitzi D B. Band tailing and efficiency limitation in kesterite solar cells. Appl. Phys. Lett., 2013,103: 103506.

Mendis B G, Shannon M D, Goodman M C J, Major J D, Taylor A A, Halliday D P, Durose K. The nature of electrostatic potential fluctuations in Cu2ZnSnS4 and their role on photovoltaic device performance. J. Phys. Conf. Ser, 2013,471: 012014.

Scragg J J S, Larsen J K, Kumar M, Persson C, Sendler J, Siebentritt S, Platzer Björkman C. Cu–Zn disorder and band gap fluctuations in Cu2ZnSn(S,Se)4: Theoretical and experimental investigations. Phys. Status Solidi B, 2016,253: 247-254.

Just J, Lützenkirchen-Hecht D, Frahm R, Schorr S, Unold T. Determination of secondary phases in kesterite Cu2ZnSnS4 thin films by x-ray absorption near edge structure analysis. Appl. Phys. Lett, 2011,99: 262105.

Altamura G, Vidal J. Impact of minor phases on the performances of CZTSSe thin-film solar cells. Chem. Mater., 2016,28: 3540-3563.

Yin W J, Wu Y, Wei S H, Noufi R, Al-Jassim M M, Yan Y. Engineering grain boundaries in Cu2ZnSnSe4 for better cell performance: a first-principle study. Adv. Energy Mater., 2014,4: 1300712.

Liu F Y, Yan C, Huang J L, Sun K W, Zhou F Z, Stride J A, Green M A, Hao X J. Nanoscale microstructure and chemistry of Cu2ZnSnS4/CdS interface in kesterite Cu2ZnSnS4 solar cells. Adv. Energy Mater, 2016,6.

Platzer-Björkman C, Frisk C, Larsen J K, Ericson T, Li S Y, Scragg J J S, Keller J, Larsson F, Törndahl T. Reduced interface recombination in Cu2ZnSnS4 solar cells with atomic layer deposition Zn1−xSnxOy buffer layers. Appl. Phys. Lett, 2015,107: 243904.

Oueslati S, Brammertz G, Buffière M, ElAnzeery H, Mangin D, ElDaif O, Touayar O, Köble C, Meuris M, Poortmans J. Study of alternative back contacts for thin film Cu2ZnSnSe4-based solar cells. J. Phys. D Appl. Phys., 2014,48: 035103.

Shin B, Bojarczuk N A, Guha S. On the kinetics of MoSe2 interfacial layer formation in chalcogen-based thin film solar cells with a molybdenum back contact. Appl. Phys. Lett, 2013,102: 091907.

Scragg J J, Kubart T, Wätjen J T, Ericson T, Linnarsson M K, Platzer-Björkman C. Effects of back contact instability on Cu2ZnSnS4 devices and processes. Chem. Mater., 2013,25: 3162-3171.

Liu F, Sun K, Li W, Yan C, Cui H, Jiang L, Hao X, Green M A. Enhancing the Cu2ZnSnS4 solar cell efficiency by back contact modification: Inserting a thin TiB2 intermediate layer at Cu2ZnSnS4/Mo interface. Appl. Phys. Lett., 2014, 104: 051105.

Cui H, Liu X, Liu F, Hao X, Song N, Yan C. Boosting Cu2ZnSnS4 solar cells efficiency by a thin Ag intermediate layer between absorber and back contact. Appl. Phys. Lett, 2014,104: 041115.

López-Marino S, Placidi M, Pérez-Tomás A, Llobet J, Izquierdo-Roca V, FontanéX, Fairbrother A, Espíndola-Rodríguez M, Sylla D, Pérez-Rodríguez A, Saucedo E. Inhibiting the absorber/Mo-back contact decomposition reaction in Cu2ZnSnSe4 solar cells: the role of a ZnO intermediate nanolayer. J. Mater. Chem. A, 2013,1: 8338-8343.

Li W, Chen J, Cui H, Liu F, Hao X. Inhibiting MoS2 formation by introducing a ZnO intermediate layer for Cu2ZnSnS4 solar cells. Mater. Lett, 2014,130: 87-90.

Liu F, Huang J, Sun K, Yan C, Shen Y, Park J, Pu A, Zhou F, Liu X, Stride J A, Green M A, Hao X. Beyond 8% ultrathin kesterite Cu2ZnSnS4 solar cells by interface reaction route controlling and self-organized nanopattern at the back contact. NPG Asia Mater, 2017,9: e401-e401.

Vermang B, Ren Y, Donzel-Gargand O, Frisk C, Joel J, Salomé P, Borme J, Sadewasser S, Platzer-Björkman C, Edoff M. Rear surface optimization of CZTS solar cells by use of a passivation layerwith nanosized point openings. IEEE J. Photovolt, 2016,6: 332-336.

Gu Y, Shen H, Ye C, Dai X, Cui Q, Li J, Hao F, Hao X, Lin H. All-solution-processed Cu2ZnSnS4 solar cells with self-depleted Na2S back contact modification layer. Adv. Funct. Mater., 2018,28: 1703369.

Zhou F, Zeng F, Liu X, Liu F, Song N, Yan C, Pu A, Park J, Sun K, Hao X. Improvement of Jsc in a Cu2ZnSnS4 solar cell by using a thin carbon intermediate layer at the Cu2ZnSnS4/Mo interface. ACS Appl. Mater. Interfaces, 2015,7: 22868-22873.

Lopez-Marino S, Espíndola-Rodríguez M, Sánchez Y, AlcobéX, Oliva F, Xie H, Neuschitzer M, Giraldo S, Placidi M, Caballero R, Izquierdo-Roca V, Pérez-Rodríguez A, Saucedo E. The importance of back contact modification in Cu2ZnSnSe4 solar cells: The role of a thin MoO2 layer. Nano Energy, 2016,26: 708-721.

Park J, Huang J, Sun K, Ouyang Z, Liu F, Yan C, Sun H, Pu A, Green M, Hao X. The effect of thermal evaporated MoO3 intermediate layer as primary back contact for kesterite Cu2ZnSnS4 solar cells. Thin Solid Films, 2018,648: 39-45.

Ranjbar S, Brammertz G, Vermang B, Hadipour A, Cong S, Suganuma K, Schnabel T, Meuris M, da Cunha A F, Poortmans J. Improvement of kesterite solar cell performance by solution synthesized MoO3 interfacial layer. Phys. Status Solidi A, 2017,214.

Liu L, Lau T K, Zhi Z, Huang L, Wang S, Xiao X. Modification of Mo back contact with MoO3−x layer and its effect to enhance the performance of Cu2ZnSnS4 solar cells. Sol. RRL, 2018,2.

Grini S, Sopiha K V, Ross N, Liu X, Bjørheim T S, Platzer-Björkman C, Persson C, Vines L. Strong interplay between sodium and oxygen in kesterite absorbers: complex formation, incorporation, and tailoring depth distributions. Adv. Energy Mater., 2019,9: 1900740.

Sardashti K, Haight R, Gokmen T, Wang W, Chang L Y, Mitzi D B, Kummel A C. Impact of nanoscale elemental distribution in high-performance kesterite solar cells. Adv. Energy Mater.,2015,5: 1402180.

Dong X F, Zheng T T, Yang F X, Sun X D, Yu L, Chen J T, Wang C W, Zhao Y, Li Y. An effective Li-containing interfacial-treating strategy for performance enhancement of air-processed CZTSSe solar cells. Sol. Energ. Mat. Sol. C., 2021,227: 111102.

Poletaev G M, Zorya I V, Rakitin R Y, Starostenkov M D. The influence of interstitial carbon and oxygen on grain boundary diffusion in nickel and silver. Russ. Phys. J, 2021,63: 2212–2218.

Lin T, Wang L, Wang X, Zhang Y, Yu Y. Influence of lattice distortion on phase transition properties of polycrystalline VO2 thin film. Appl. Surf. Sci., 2016,379: 179–185.

Daniel A R, Thomas K, Uwe R. Advanced Characterization Techniques for Thin Film Solar Cells, Wiley, 2011.

Su Z, Tan J M R, Li X, Zeng X, Batabyal S K, Wong H. Cation substitution of solution-processed Cu2ZnSnS4 thin film solar cell with over 9% efficiency. Adv. Energy Mater, 2015,5: 1500682.

Zhao X, Kou D, Zhou W, Zhou Z, Meng Y, Meng Q, Zheng Z, Wu S. Nanoscale electrical property enhancement through antimony incorporation to pave the way for the development of low-temperature processed Cu2ZnSn(S,Se)4 solar cells. J. Mater. Chem., 2019,7: 3135–3142.

Guchhait A, Su Z, Tay Y F, Shukla S, Li W, Leow S W, Tan J M R, Lie S, Gunawan O, Wong L H. Enhancement of open-circuit voltage of solution-processed Cu2ZnSnS4 solar cells with 7.2% efficiency by incorporation of silver. ACS Energy Lett, 2016,1: 1256–1261.

Hages C J, Koeper M J, Agrawal R. Optoelectronic and material properties of nanocrystal-based CZTSe absorbers with Ag-alloying. Sol. Energy Mater. Sol. Cells, 2016,145: 342–348.

Yu Q, Shi J, Guo L, Duan B, Luo Y, Wu H, Li D, Meng Q. Eliminating multilayer crystallization of Cu2ZnSn(S,Se)4 absorber by controlling back interface reaction. Nano Energy, 2020,76: 105042.

Min X, Guo L, Yu Q, Duan B, Shi J, Wu H, Luo Y, Li D, Meng Q. Enhancing back interfacial contact by in-situ prepared MoO3 thin layer for Cu2ZnSnSxSe4-x solar cells. Sci. China Mater, 2019,62: 797–802.

Dong X, Li S, Sun H, He Q, Zhao Y, Li Y. Influence of Mo-pretreating on microstructure evolution of solution-processed absorbers for high efficient CZTSSe solar cells. Mater. Lett., 2022,315:131992.

Xu B, Lu X, Ma C, Liu Y, Qi R, Huang R, Chen Y, Yang P, Chu J, Sun L. MoO2 sacrificial layer for optimizing back contact interface of Cu2ZnSn(S,Se)4 solar cells. IEEE J. Photovoltaics, 2020,10:1191–1200.







How to Cite

Design of MoO3 Porous Back Contact for High Efficiency CZTSSe Thin-film Solar Cells. (2024). Academic Journal of Science and Technology, 11(2), 144-151.

Similar Articles

1-10 of 934

You may also start an advanced similarity search for this article.