Research Progress of Cryptosporidium Adhesion and Gliding Motility Related Proteins
DOI:
https://doi.org/10.54097/tn7mpv59Keywords:
Cryptosporidium; Virulence Factors; Adhesion; Gliding Motility.Abstract
This review focuses on the complex molecular mechanisms involved in the adhesion and gliding motility of Cryptosporidium, emphasizing the importance of these processes in Cryptosporidium infection and summarizing the virulence factors involved. Subsequently, The manuscript meticulously examines the functional profiles and the chronicled research trajectories of adhesion-associated virulence factors, namely CSL, gp40/15, and gp900. In parallel, it explores the repertoire of factors implicated in gliding motility, including TRAP-C1, Cptsp4, and CpROM. Each factor is contextualized within the broader framework of the parasite's engagement with host defenses and its evasion strategies. Moreover, the review prognosticates the prospective research avenues that these factors are poised to influence, offering a measured appraisal of their viability as targets for vaccine and therapeutic development. The discourse encapsulates the current state of knowledge while venturing into the uncharted territories of potential, thereby establishing a robust foundation for future investigative endeavors aimed at demystifying the biological intricacies and pathogenic mechanisms of Cryptosporidium.
Downloads
References
[1] BERTUCCINI, L., BOUSSADIA, Z., SALZANO, A. M., VANNI, I., PASSERÒ, I., NOCITA, E., SCALONI, A., SANCHEZ, M., SARGIACOMO, M., FIANI, M. L. & TOSINI, F. (2024), "Unveiling Cryptosporidium parvum sporozoite-derived extracellular vesicles: profiling, origin, and protein composition", Frontiers in cellular and infection microbiology, Vol. 141367359-1367359.
[2] BOUZID, M. H. P. R. (2013), "Cryptosporidium Pathogenicity and Virulence", Clinical Microbiology Reviews, Vol. 26 No. 1, pp. 115-134.
[3] CUI, Z., WANG, L., WANG, Y., LI, J., WANG, R., SUN, M. & ZHANG, L. (2020), "Cryptosporidium parvum gp40/15 Is Associated with the Parasitophorous Vacuole Membrane and Is a Potential Vaccine Target", Microorganisms, Vol. 8 No. 3, pp. 363.
[4] DENG, M., TEMPLETON, T. J., LONDON, N. R., BAUER, C., SCHROEDER, A. A. & ABRAHAMSEN, M. S. (2002), "Cryptosporidium parvum Genes Containing Thrombospondin Type 1 Domains", Infection and Immunity, Vol. 70 No. 12, pp. 6987-6995.
[5] JOHN, A., M. BADER, S., MADIEDO SOLER, N., WIRADIPUTRI, K., TICHKULE, S., SMYTH, S. T., RALPH, S. A., JEX, A. R., SCOTT, N. E., TONKIN, C. J. & GODDARD-BORGER, E. D. (2023), "Conservation, abundance, glycosylation profile, and localization of the TSP protein family in Cryptosporidium parvum", The Journal of biological chemistry, Vol. 299 No. 3, pp. 103006-103006.
[6] KAPPE, S., BRUDERER, T., GANTT, S., FUJIOKA, H., NUSSENZWEIG, V. & MÉNARD, R. (1999), "Conservation of a Gliding Motility and Cell Invasion Machinery in Apicomplexan Parasites", The Journal of cell biology, Vol. 147 No. 5, pp. 937-943.
[7] LANGER, R. C. & RIGGS, M. W. (1999), "Cryptosporidium parvum apical complex glycoprotein CSL contains a sporozoite ligand for intestinal epithelial cells", Infect Immun, Vol. 67 No. 10, pp. 5282-91.
[8] LENDNER, M. & DAUGSCHIES, A. (2014), "Cryptosporidium infections: molecular advances", Parasitology, Vol. 141 No. 11, pp. 1511-1532.
[9] LI, M., SUN, X., CHEN, H., LI, N., FENG, Y., XIAO, L. & GUO, Y. (2024), "Stable expression of mucin glycoproteins GP40 and GP15 of Cryptosporidium parvum in Toxoplasma gondii", Parasit Vectors, Vol. 17 No. 1, pp. 65.
[10] LI, M., XICHEN, Z., PENGTAO, G. & LI, J. (2016), "Cryptosporidium parvum rhomboid1 has an activity in microneme protein CpGP900 cleavage", Parasites & Vectors, No. 9, pp. 438.
[11] LI, X., YIN, J., WANG, D., GAO, X., ZHANG, Y., WU, M. & ZHU, G. (2022), "The mucin-like, secretory type-I transmembrane glycoprotein GP900 in the apicomplexan Cryptosporidium parvum is cleaved in the secretory pathway and likely plays a lubrication role", Parasites & vectors, Vol. 15 No. 1, pp. 170-170.
[12] OKHUYSEN, P. C., ROGERS, G. A., CRISANTI, A., SPANO, F., HUANG, D. B., CHAPPELL, C. L. & TZIPORI, S. (2004), "Antibody Response of Healthy Adults to Recombinant Thrombospondin-Related Adhesive Protein of Cryptosporidium 1 after Experimental Exposure to Cryptosporidium Oocysts", Clinical and Diagnostic Laboratory Immunology, Vol. 11 No. 2, pp. 235-238.
[13] PETERSEN, C., GUT, J., DOYLE, P. S., CRABB, J. H., NELSON, R. G. & LEECH, J. H. (1992), "Characterization of a >900,000-Mr Cryptosporidium parvum Sporozoite Glycoprotein Recognized by Protective Hyperimmune Bovine Colostral Immunoglobulin", Infection and Immunity, Vol. 60 No. 12, pp. 5132-5138.
[14] WANG, D., JIANG, P., WU, X., ZHANG, Y., WANG, C., LI, M., LIU, M., YIN, J. & ZHU, G. (2024), "Requirement of microtubules for secretion of a micronemal protein CpTSP4 in the invasive stage of the apicomplexan Cryptosporidium parvum", mBio, Vol. 15 No. 2, pp. e0315823.
[15] YAHATA, K., HART, M. N., DAVIES, H., ASADA, M., WASSMER, S. C., TEMPLETON, T. J., TREECK, M., MOON, R. W. & KANEKO, O. (2021), "Gliding motility of Plasmodium merozoites", Proceedings of the National Academy of Sciences - PNAS, Vol. 118 No. 48, pp.
[16] YANG, L., WANG, L., WANG, J., ZHOU, K., YAN, B., ZHAO, W. & HUANG, H. (2024), "Expression of Cryptosporidium parvum GP900 829-1099 protein and its immunomodulatory effects on mouse macrophages cells", Chinese Journal of Parasitology and Parasitic Diseases, Vol. 42 No. 1, pp. 55-62.
[17] ZHANG, X. T., WANG, L. Y., ZHANG, L. X. & ZHANG, S. M. (2022), "Research Progress on Adhesion and Invasion-Related Proteins of Cryptosporidium", Chinese Journal of Preventive Veterinary Medicine, Vol. 44 No. 08, pp. 896-902.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Academic Journal of Science and Technology
This work is licensed under a Creative Commons Attribution 4.0 International License.