Study of Non-Periodical Mechanical Metamaterials: Design and Application

Authors

  • Jindong Huo
  • Ningzhen Wang
  • Hongtao Peng

DOI:

https://doi.org/10.54097/ajst.v3i3.2920

Keywords:

Mechanical metamaterial, Wave transmission, Bandgap, Velocity tuning, Nanofabrication.

Abstract

We studied a typical mechanical metamaterial with different geometry patterns to demonstrate its effect in wave transmission. An inclusion geometry described by the trigonometric function is employed to generate local resonance under wave propagation. It has been found that the inclusion geometry plays an important role in the bandgap formation and attenuation of sound wave. More importantly, for a hybrid unitcell, the existing of flat and negative-slope bands indicates the translational mode of the dense core, which is critical to understand the wave reflection through non-periodical metamaterials. Furthermore, we propose a concept of velocity tuning of its individual components, which gives rise to local high strain energy, to explain why the absorptivity of sound wave is high. With help of embedded electronic units and dielectric materials, we can realize the active control of the deformation and reconfiguration of the unitcell, thus, to alter its band structure properties. The fabrication of such metamaterials can be realized by plasma etching, laser printing and nanofabrication from centimeter scale to nanometer scale. Therefore, the applications of mechanical metamaterials can be extended from sound filtering in centimeter scale to thermal management in nanometer scale.

References

T. Bückmann, N. Stenger, M. Kadic, J. Kaschke, A. Frölich, T. Kennerknecht, C. Eberl, M. Thiel, M. Wegener, Tailored 3D mechanical metamaterials made by dip‐in direct‐laser‐writing optical lithography, Advanced Materials 24(20) (2012) 2710-2714.

J. Liu, H. Guo, T. Wang, A Review of Acoustic Metamaterials and Phononic Crystals, Crystals 10(4) (2020).

Z. Chen, W. Zhou, C. Lim, Active control for acoustic wave propagation in nonlinear diatomic acoustic metamaterials, International Journal of Non-Linear Mechanics 125 (2020) 103535.

J. Mei, G. Ma, M. Yang, J. Yang, P. Sheng, Dynamic mass density and acoustic metamaterials, Acoustic metamaterials and phononic crystals, Springer2013, pp. 159-199.

D.Z. Rocklin, S. Zhou, K. Sun, X. Mao, Transformable topological mechanical metamaterials, Nat Commun 8 (2017) 14201.

N. Zen, T.A. Puurtinen, T.J. Isotalo, S. Chaudhuri, I.J. Maasilta, Engineering thermal conductance using a two-dimensional phononic crystal, Nat Commun 5 (2014) 3435.

T. Matsuki, T. Yamada, K. Izui, S. Nishiwaki, Topology optimization for locally resonant sonic materials, Applied Physics Letters 104(19) (2014) 191905.

O. Sigmund, J.S. Jensen, Systematic design of phononic band–gap materials and structures by topology optimization, Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 361(1806) (2003) 1001-1019.

G. Ma, P. Sheng, Acoustic metamaterials: From local resonances to broad horizons, Science advances 2(2) (2016) e1501595.

A.O. Krushynska, V.G. Kouznetsova, M.G.D. Geers, Towards optimal design of locally resonant acoustic metamaterials, Journal of the Mechanics and Physics of Solids 71 (2014) 179-196.

Y. Wang, Z. Li, T.J. Moran, L.A. Ortiz, C. Wu, A.C. Konstantinou, H. Nguyen, J. Zhou, J. Huo, K. Davis‐Amendola, Interfacial 2D Montmorillonite Nanocoatings Enable Sandwiched Polymer Nanocomposites to Exhibit Ultrahigh Capacitive Energy Storage Performance at Elevated Temperatures, Advanced Science (2022) 2204760.

N. Wang, K. Davis, M. Sotzing, M.A. Baferani, J. Huo, C.B. Carter, R. Gerhard, Y. Cao, Flexible nanogenerator with 3D-printed ferroelectrets, 2021 IEEE Conference on Electrical Insulation and Dielectric Phenomena (CEIDP), IEEE, 2021, pp. 375-378.

Q. Wang, Y. Wang, H. Nguyen, J. Huo, J. Ronzello, Y. Cao, Influence of ZnO Nanoparticles on the Light Absorption Spectrum of PMMA for Ablation Dominated Arc Interruption, 2020 IEEE Conference on Electrical Insulation and Dielectric Phenomena (CEIDP), IEEE, 2020, pp. 267-270.

J.T.B. Overvelde, K. Bertoldi, Relating pore shape to the non-linear response of periodic elastomeric structures, Journal of the Mechanics and Physics of Solids 64 (2014) 351-366.

X. Yan-Long, C. Chang-Qing, T. Xiao-Geng, The existence of simultaneous Bragg and locally resonant band gaps in composite phononic crystal, Chinese Physics Letters 30(4) (2013) 044301.

J.D. Huo, Q. Zhang, H.T. Peng, J. Wang, X.F. Peng, Mechanical analysis of water cellar structure, Advanced Materials Research, Trans Tech Publ, 2012, pp. 231-236.

Z. Liu, X. Zhang, Y. Mao, Y. Zhu, Z. Yang, C. Chan, P. Sheng, Locally resonant sonic materials, Science 289(5485) (2000) 1734-1736.

A.O. Krushynska, M. Miniaci, F. Bosia, N.M. Pugno, Coupling local resonance with Bragg band gaps in single-phase mechanical metamaterials, Extreme Mechanics Letters (2016).

M. Maldovan, Narrow low-frequency spectrum and heat management by thermocrystals, Phys Rev Lett 110(2) (2013) 025902.

J. Huo, Y. Wang, Y. Cao, 3D computational study of arc splitting during power interruption: the influence of metal vapor enhanced radiation on arc dynamics, Journal of Physics D: Applied Physics 54(8) (2020) 085502.

J. Huo, J. Ronzello, A. Rontey, Y. Wang, L. Jacobs, T. Sommerer, Y. Cao, Development of an arc root model for studying the electrode vaporization and its influence on arc dynamics, AIP Advances 10(8) (2020) 085324.

J. Huo, S. Selezneva, L. Jacobs, Y. Cao, Study of wall ablation on low-voltage arc interruption: The effect of Stefan flow, Journal of Applied Physics 125(21) (2019) 213302.

J. Huo, A. Rontey, Y. Wang, L. Jacobs, Q. Chen, N. Wang, S. Ma, Y. Cao, Arc hopping dynamics induced by interfacial negative differential resistance, PNAS Nexus 1(3) (2022) pgac129.

J. Huo, Y. Cao, Interfacial potential barrier induced constriction and stepwise transition of a dynamic arc root, 2019 IEEE Conference on Electrical Insulation and Dielectric Phenomena (CEIDP), IEEE, 2019, pp. 564-567.

J. Sun, H. Wang, J. Zheng, Z. Li, J. Huo, C. Guo, Y. Wang, P. Xiao, S. Akram, D. Qin, Comprehensive review of treatments for suppressing surface charge accumulation and enhancing surface flashover voltage, CSEE Journal of Power and Energy Systems (2022).

[J. Sun, S. Song, J. Zheng, Z. Li, J. Huo, Y. Wang, P. Xiao, S. Akram, D. Qin, A Review on Surface Flashover Phenomena at DC Voltage in Vacuum and Compressed Gas, IEEE Transactions on Dielectrics and Electrical Insulation 29(1) (2022) 1-14.

Y. Wang, Z. Li, C. Wu, P. Zhou, J. Zhou, J. Huo, K. Davis, A.C. Konstantinou, H. Nguyen, Y. Cao, Polyamideimide dielectric with montmorillonite nanosheets coating for high-temperature energy storage, Chemical Engineering Journal 437 (2022) 135430.

Y. Wang, S. Nasreen, D. Kamal, Z. Li, C. Wu, J. Huo, L. Chen, R. Ramprasad, Y. Cao, Tuning Surface States of Metal/Polymer Contacts Toward Highly Insulating Polymer-Based Dielectrics, ACS Applied Materials & Interfaces 13(38) (2021) 46142-46150.

X. Zhao, Z. Suo, Theory of dielectric elastomers capable of giant deformation of actuation, Phys Rev Lett 104(17) (2010) 178302.

N. Wang, J. van Turnhout, R. Daniels, C. Wu, J. Huo, R. Gerhard, G. Sotzing, Y. Cao, Ion-Boosting the Charge Density and Piezoelectric Response of Ferroelectrets to Significantly High Levels, ACS Applied Materials & Interfaces (2022).

J. Huo, X. You, J. Hu, Z. Zhuang, An elasto-plastic damage accumulation model for fatigue life predication of ductile metals at the yield stress, International Journal of Damage Mechanics 31(3) (2022) 464-476.

Downloads

Published

21 November 2022

How to Cite

Huo, J., Wang, N., & Peng, H. (2022). Study of Non-Periodical Mechanical Metamaterials: Design and Application. Academic Journal of Science and Technology, 3(3), 148–152. https://doi.org/10.54097/ajst.v3i3.2920

Issue

Section

Articles