Application of MXene Materials in Aqueous Zinc-Ion Batteries
DOI:
https://doi.org/10.54097/37krff08Keywords:
Aqueous Zinc-Ion Batteries (AZIBs), MXene Materials, Cathode Materials, Anode Materials, Separator, Electrolyte, Zinc Dendrite Suppression, Cycling Stability.Abstract
As the global requirement for renewable energy grows, zinc-ion batteries (AZIBs) are an ideal replacement for lithium-ion batteries due to their plentiful zinc resources, inexpensive, and high level of security. Nevertheless, the energy density, circulation reliability, and zinc dendrite formation issues of AZIBs limit their widespread application. MXene materials, featuring a distinctive two-dimensional structure,high-conductivity, and abundant surface functional groups, show great potential in the cathode, anode, separator, and electrolyte of AZIBs. This study systematically explores the applications of MXene materials in various AZIB components, including their roles in enhancing zinc ion transport efficiency, suppressing dendrite growth, and improving battery cycling life.
Downloads
References
[1] Jia, X., Liu, C., Neale, Z. G., Yang, J., & Cao, G. (2020). Active materials for aqueous zinc ion batteries: synthesis, crystal structure, morphology, and electrochemistry. Chemical Reviews, 120(15), 7795-7866.
[2] Shen, Y., Lv, H., & Chen, L. (2023). Recent advances in two-dimensional MXenes for zinc-ion batteries. Materials Chemistry Frontiers, 7(12), 2373-2404.
[3] Halim, J., Lukatskaya, M. R., Cook, K. M., Lu, J., Smith, C. R., Näslund, L. Å., ... & Barsoum, M. W. (2014). Transparent conductive two-dimensional titanium carbide epitaxial thin films. Chemistry of Materials, 26(7), 2374-2381.
[4] Zhang, Y., Bi, S., Niu, Z., Zhou, W., & Xie, S. (2022). Design of Zn anode protection materials for mild aqueous Zn-ion batteries. Energy Mater, 2(2), 200012.
[5] Zhu, X., Cao, Z., Wang, W., Li, H., Dong, J., Gao, S., ... & Ye, M. (2021). Superior-performance aqueous zinc-ion batteries based on the in situ growth of MnO2 nanosheets on V2CTX MXene. ACS nano, 15(2), 2971-2983.
[6] Naguib, M., Mochalin, V. N., Barsoum, M. W., & Gogotsi, Y. (2014). 25th anniversary article: MXenes: a new family of two‐dimensional materials. Advanced materials, 26(7), 992-1005.
[7] Narayanasamy, M., Kirubasankar, B., Shi, M., Velayutham, S., Wang, B., Angaiah, S., & Yan, C. (2020). Morphology restrained growth of V 2 O 5 by the oxidation of V-MXenes as a fast diffusion controlled cathode material for aqueous zinc ion batteries. Chemical communications, 56(47), 6412-6415.
[8] Kundu, D., Adams, B. D., Duffort, V., Vajargah, S. H., & Nazar, L. F. (2016). A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode. Nature Energy, 1(10), 1-8.
[9] Yang, L., Zhou, M., Xie, Y., Shen, X., Liang, S., & Fang, G. (2024). Separators in aqueous zinc-ion batteries: Interfacial chemistry and optimization strategies. Energy Storage Materials, 103271.
[10] Su, Y., Liu, B., Zhang, Q., Peng, J., Wei, C., Li, S., ... & Sun, J. (2022). Printing‐scalable Ti3C2Tx MXene‐decorated Janus separator with expedited Zn2+ flux toward stabilized Zn anodes. Advanced Functional Materials, 32(32), 2204306.
[11] An, Y., Tian, Y., Man, Q., Shen, H., Liu, C., Qian, Y., ... & Qian, Y. (2022). Highly reversible Zn metal anodes enabled by freestanding, lightweight, and zincophilic MXene/nanoporous oxide heterostructure engineered separator for flexible Zn-MnO2 batteries. ACS nano, 16(4), 6755-6770.
[12] Sun, C., Wu, C., Gu, X., Wang, C., & Wang, Q. (2021). Interface engineering via Ti 3 C 2 T x MXene electrolyte additive toward dendrite-free zinc deposition. Nano-micro letters, 13, 1-13.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Academic Journal of Science and Technology

This work is licensed under a Creative Commons Attribution 4.0 International License.