Research Progress of Constructing Anode Materials for Potassium Ion Batteries Based on Electrospinning Technology

Authors

  • Zheng Liu
  • Xingqun Zhu
  • Ming Song
  • Rai Nauman Ali
  • Yingtao Tang

DOI:

https://doi.org/10.54097/ajst.v4i3.4778

Keywords:

Potassium-ion battery, Anode material, Electrospinning.

Abstract

Potassium offers the benefits of plentiful supplies, widespread availability, and inexpensive cost. Potassium-ion batteries (KIBs) are thought to be one of the best energy storage technologies to take the place of lithium-ion batteries in the future since potassium has a low electrode potential and rapid ion transport kinetics in the electrochemical system. As opposed to lithium-ion batteries, potassium-ion battery research is still in its early stages, and the system has issues with low capacity, inferior rate performance, and short cycle life. As a result, creating safe, dependable, and high-performance charge-discharge potassium-ion batteries still presents several difficulties. One of the main elements promoting the development of potassium-ion batteries is the development of anode materials for these batteries. At present, there are various methods for constructing potassium-ion battery anode materials, including hydrothermal method, solid phase reaction, electrospinning method, etc. The advancement of electrospinning and the creation of potassium-ion battery anode materials based on electrospinning are the main topics of this review article. This report also anticipates the direction of research and development for high-performance, low-cost anode materials.

Downloads

Download data is not yet available.

References

Lu, L.; Han, X.; Li, J.; Hua, J.; Ouyang, M., A review on the key issues for lithium-ion battery management in electric vehicles. Journal of Power Sources 2013, 226, 272-288.

Tarascon;, J.-M.; Armand, M., Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359-367.

Larcher, D.; Tarascon, J. M., Towards greener and more sustainable batteries for electrical energy storage. Nat Chem 2015, 7, (1), 19-29.

Kim, S.-W.; Seo, D.-H.; Ma, X.; Ceder, G.; Kang, K., Electrode Materials for Rechargeable Sodium-Ion Batteries: Potential Alternatives to Current Lithium-Ion Batteries. Advanced Energy Materials 2012, 2, (7), 710-721.

Xing, L.; Yu, Q.; Bao, Y.; Chu, J.; Han, K.; Chong, S.; Lao, C.-Y.; Lai, F.; Li, P.; Xi, K.; Wang, W., Strong (001) facet-induced growth of multi-hierarchical tremella-like Sn-doped V2O5 for high-performance potassium-ion batteries. Journal of Materials Chemistry A 2019, 7, (45), 25993-26001.

Suo, G.; Zhang, J.; Li, D.; Yu, Q.; Wang, W.; He, M.; Feng, L.; Hou, X.; Yang, Y.; Ye, X.; Zhang, L., N-doped carbon/ultrathin 2D metallic cobalt selenide core/sheath flexible framework bridged by chemical bonds for high-performance potassium storage. Chemical Engineering Journal 2020, 388.

Abid, N.; Khan, A. M.; Shujait, S.; Chaudhary, K.; Ikram, M.; Imran, M.; Haider, J.; Khan, M.; Khan, Q.; Maqbool, M., Synthesis of nanomaterials using various top-down and bottom-up approaches, influencing factors, advantages, and disadvantages: A review. Adv Colloid Interface Sci 2022, 300, 102597.

Wang, Y.; Xia, Y., Bottom-Up and Top-Down Approaches to the Synthesis of Monodispersed Spherical Colloids of Low Melting-Point Metals. Nano letter 2004, 4, 2047-2050.

Koch, C. C., Top-down synthesis of nanostructured materials: Mechanical and thermal processing methods. Rev.Adv.Mater.Sci 2003, 5, 91-99.

Guo, Y.; Wang, X.; Shen, Y.; Dong, K.; Shen, L.; Alzalab, A. A. A., Research progress, models and simulation of electrospinning technology: a review. J Mater Sci 2022, 57, (1), 58-104.

Lu, W.; Sun, J.; Jiang, X., Recent advances in electrospinning technology and biomedical applications of electrospun fibers. J Mater Chem B 2014, 2, (17), 2369-2380.

Min, X.; Xiao, J.; Fang, M.; Wang, W.; Zhao, Y.; Liu, Y.; Abdelkader, A. M.; Xi, K.; Kumar, R. V.; Huang, Z., Potassium-ion batteries: outlook on present and future technologies. Energy & Environmental Science 2021, 14, (4), 2186-2243.

Xu, Y.-S.; Duan, S.-Y.; Sun, Y.-G.; Bin, D.-S.; Tao, X.-S.; Zhang, D.; Liu, Y.; Cao, A.-M.; Wan, L.-J., Recent developments in electrode materials for potassium-ion batteries. Journal of Materials Chemistry A 2019, 7, (9), 4334-4352.

Liu, Y.; Gao, C.; Dai, L.; Deng, Q.; Wang, L.; Luo, J.; Liu, S.; Hu, N., The Features and Progress of Electrolyte for Potassium Ion Batteries. Small 2020, 16, (44), e2004096.

Kim, H.; Kim, J. C.; Bianchini, M.; Seo, D. H.; Rodriguez-Garcia, J.; Ceder, G., Recent Progress and Perspective in Electrode Materials for K-Ion Batteries. Advanced Energy Materials 2017, 8, (9).

Wu, X.; Leonard, D. P.; Ji, X., Emerging Non-Aqueous Potassium-Ion Batteries: Challenges and Opportunities. Chemistry of Materials 2017, 29, (12), 5031-5042.

Zhao, J.; Zou, X.; Zhu, Y.; Xu, Y.; Wang, C., Electrochemical Intercalation of Potassium into Graphite. Advanced Functional Materials 2016, 26, (44), 8103-8110.

Park, J.; Lee, J.; Alfaruqi, M. H.; Kwak, W.-J.; Kim, J.; Hwang, J.-Y., Initial investigation and evaluation of potassium metal as an anode for rechargeable potassium batteries. Journal of Materials Chemistry A 2020, 8, (33), 16718-16737.

Bin, D. S.; Lin, X. J.; Sun, Y. G.; Xu, Y. S.; Zhang, K.; Cao, A. M.; Wan, L. J., Engineering Hollow Carbon Architecture for High-Performance K-Ion Battery Anode. J Am Chem Soc 2018, 140, (23), 7127-7134.

Xu, Y.; Bahmani, F.; Zhou, M.; Li, Y.; Zhang, C.; Liang, F.; Kazemi, S. H.; Kaiser, U.; Meng, G.; Lei, Y., Enhancing potassium-ion battery performance by defect and interlayer engineering. Nanoscale Horiz 2019, 4, (1), 202-207.

Zhou, M.; Bai, P.; Ji, X.; Yang, J.; Wang, C.; Xu, Y., Electrolytes and Interphases in Potassium Ion Batteries. Adv Mater 2021, 33, (7), e2003741.

Verma, R.; Didwal, P. N.; Hwang, J. Y.; Park, C. J., Recent Progress in Electrolyte Development and Design Strategies for Next-Generation Potassium-Ion Batteries. Batteries & Supercaps 2021, 4, (9), 1428-1450.

Wang, H.; Zhai, D.; Kang, F., Solid electrolyte interphase (SEI) in potassium ion batteries. Energy & Environmental Science 2020, 13, (12), 4583-4608.

Zhou, J.; Guo, S., Carbon‐based anode materials for potassium‐ion batteries: From material, mechanism to performance. SmartMat 2021, 2, (2), 176-201.

Xie, K.; Yuan, K.; Li, X.; Lu, W.; Shen, C.; Liang, C.; Vajtai, R.; Ajayan, P.; Wei, B., Superior Potassium Ion Storage via Vertical MoS2 "Nano-Rose" with Expanded Interlayers on Graphene. Small 2017, 13, (42).

Lei, K.; Li, F.; Mu, C.; Wang, J.; Zhao, Q.; Chen, C.; Chen, J., High K-storage performance based on the synergy of dipotassium terephthalate and ether-based electrolytes. Energy & Environmental Science 2017, 10, (2), 552-557.

Zhang, C.; Zhao, H.; Lei, Y., Recent Research Progress of Anode Materials for Potassium‐ion Batteries. Energy & Environmental Materials 2020, 3, (2), 105-120.

Bhardwaj, N.; Kundu, S. C., Electrospinning: a fascinating fiber fabrication technique. Biotechnol Adv 2010, 28, (3), 325-47.

Zhu, S.; Nie, L., Progress in fabrication of one-dimensional catalytic materials by electrospinning technology. Journal of Industrial and Engineering Chemistry 2021, 93, 28-56.

Chen, K.; Chou, W.; Liu, L.; Cui, Y.; Xue, P.; Jia, M., Electrochemical Sensors Fabricated by Electrospinning Technology: An Overview. Sensors (Basel) 2019, 19, (17).

Huang, A.; Ma, Y.; Peng, J.; Li, L.; Chou, S.-l.; Ramakrishna, S.; Peng, S., Tailoring the structure of silicon-based materials for lithium-ion batteries via electrospinning technology. eScience 2021, 1, (2), 141-162.

Teo, W. E.; Ramakrishna, S., A review on electrospinning design and nanofibre assemblies. Nanotechnology 2006, 17, (14), R89-R106.

Angammana, C. J.; Jayaram, S. H., Fundamentals of electrospinning and processing technologies. Particulate Science and Technology 2015, 34, (1), 72-82.

Subbiah, T.; Bhat, G. S.; Tock, R. W.; Parameswaran, S.; Ramkumar, S. S., Electrospinning of nanofibers. Journal of Applied Polymer Science 2005, 96, (2), 557-569.

S, J. V.; Sambath Kumar, K.; Seal, S.; Rajaraman, S.; Thomas, J., Fiber-Type Solar Cells, Nanogenerators, Batteries, and Supercapacitors for Wearable Applications. Adv Sci (Weinh) 2018, 5, (9), 1800340.

Kong, L.; Tang, C.; Peng, H. J.; Huang, J. Q.; Zhang, Q., Advanced energy materials for flexible batteries in energy storage: A review. SmartMat 2020, 1, (1).

Yan, T.; Wang, Z.; Pan, Z.-J., Flexible strain sensors fabricated using carbon-based nanomaterials: A review. Current Opinion in Solid State and Materials Science 2018, 22, (6), 213-228.

Li, X.; Chen, Y.; Huang, H.; Mai, Y.-W.; Zhou, L., Electrospun carbon-based nanostructured electrodes for advanced energy storage – A review. Energy Storage Materials 2016, 5, 58-92.

Han, Z.; Cheng, Z.; Chen, Y.; Li, B.; Liang, Z.; Li, H.; Ma, Y.; Feng, X., Fabrication of highly pressure-sensitive, hydrophobic, and flexible 3D carbon nanofiber networks by electrospinning for human physiological signal monitoring. Nanoscale 2019, 11, (13), 5942-5950.

Robert Ilango, P.; Peng, S., Electrospinning techniques for Li, Na and K-ion batteries. Current Opinion in Electrochemistry 2019, 18, 106-112.

Tian, X.; Li, X.; Yang, T.; Wang, K.; Wang, H.; Song, Y.; Liu, Z.; Guo, Q., Porous worm-like NiMoO4 coaxially decorated electrospun carbon nanofiber as binder-free electrodes for high performance supercapacitors and lithium-ion batteries. Applied Surface Science 2018, 434, 49-56.

Kaerkitcha, N.; Chuangchote, S.; Sagawa, T., Control of physical properties of carbon nanofibers obtained from coaxial electrospinning of PMMA and PAN with adjustable inner/outer nozzle-ends. Nanoscale Res Lett 2016, 11, (1), 186.

Hao, R.; Lan, H.; Kuang, C.; Wang, H.; Guo, L., Superior potassium storage in chitin-derived natural nitrogen-doped carbon nanofibers. Carbon 2018, 128, 224-230.

Cao, W.; Zhang, E.; Wang, J.; Liu, Z.; Ge, J.; Yu, X.; Yang, H.; Lu, B., Potato derived biomass porous carbon as anode for potassium ion batteries. Electrochimica Acta 2019, 293, 364-370.

Jian, Z.; Luo, W.; Ji, X., Carbon Electrodes for K-Ion Batteries. J Am Chem Soc 2015, 137, (36), 11566-9.

Chen, M.; Wang, W.; Liang, X.; Gong, S.; Liu, J.; Wang, Q.; Guo, S.; Yang, H., Sulfur/Oxygen Codoped Porous Hard Carbon Microspheres for High-Performance Potassium-Ion Batteries. Advanced Energy Materials 2018, 8, (19).

Jian, Z.; Xing, Z.; Bommier, C.; Li, Z.; Ji, X., Hard Carbon Microspheres: Potassium-Ion Anode Versus Sodium-Ion Anode. Advanced Energy Materials 2016, 6, (3).

Jian, Z.; Hwang, S.; Li, Z.; Hernandez, A. S.; Wang, X.; Xing, Z.; Su, D.; Ji, X., Hard–Soft Composite Carbon as a Long‐Cycling and High‐Rate Anode for Potassium‐Ion Batteries. Advanced Functional Materials 2017, 27, (26).

Zhao, Y.; Ruan, J.; Luo, S.; Sun, H.; Pang, Y.; Yang, J.; Zheng, S., Rational Construction of a Binder-Free and Universal Electrode for Stable and Fast Alkali-Ion Storage. ACS Appl Mater Interfaces 2019, 11, (43), 40006-40013.

Xu, Y.; Zhang, C.; Zhou, M.; Fu, Q.; Zhao, C.; Wu, M.; Lei, Y., Highly nitrogen doped carbon nanofibers with superior rate capability and cyclability for potassium ion batteries. Nat Commun 2018, 9, (1), 1720.

Adams, R. A.; Syu, J. M.; Zhao, Y.; Lo, C. T.; Varma, A.; Pol, V. G., Binder-Free N- and O-Rich Carbon Nanofiber Anodes for Long Cycle Life K-Ion Batteries. ACS Appl Mater Interfaces 2017, 9, (21), 17872-17881.

Komaba, S.; Hasegawa, T.; Dahbi, M.; Kubota, K., Potassium intercalation into graphite to realize high-voltage/high-power potassium-ion batteries and potassium-ion capacitors. Electrochemistry Communications 2015, 60, 172-175.

Tai, Z.; Liu, Y.; Zhang, Q.; Zhou, T.; Guo, Z.; Liu, H. K.; Dou, S. X., Ultra-light and flexible pencil-trace anode for high performance potassium-ion and lithium-ion batteries. Green Energy & Environment 2017, 2, (3), 278-284.

Li, J.; Qin, W.; Xie, J.; Lei, H.; Zhu, Y.; Huang, W.; Xu, X.; Zhao, Z.; Mai, W., Sulphur-doped reduced graphene oxide sponges as high-performance free-standing anodes for K-ion storage. Nano Energy 2018, 53, 415-424.

Zhao, X.; Tang, Y.; Ni, C.; Wang, J.; Star, A.; Xu, Y., Free-Standing Nitrogen-Doped Cup-Stacked Carbon Nanotube Mats for Potassium-Ion Battery Anodes. ACS Applied Energy Materials 2018, 1, (4), 1703-1707.

Qi, X.; Huang, K.; Wu, X.; Zhao, W.; Wang, H.; Zhuang, Q.; Ju, Z., Novel fabrication of N-doped hierarchically porous carbon with exceptional potassium storage properties. Carbon 2018, 131, 79-85.

Bin, D. S.; Chi, Z. X.; Li, Y.; Zhang, K.; Yang, X.; Sun, Y. G.; Piao, J. Y.; Cao, A. M.; Wan, L. J., Controlling the Compositional Chemistry in Single Nanoparticles for Functional Hollow Carbon Nanospheres. J Am Chem Soc 2017, 139, (38), 13492-13498.

Luo, W.; Li, F.; Zhang, W.; Han, K.; Gaumet, J.-J.; Schaefer, H.-E.; Mai, L., Encapsulating segment-like antimony nanorod in hollow carbon tube as long-lifespan, high-rate anodes for rechargeable K-ion batteries. Nano Research 2019, 12, (5), 1025-1031.

Xu, Y.; Yuan, T.; Zhao, Y.; Yao, H.; Yang, J.; Zheng, S., Constructing Multichannel Carbon Fibers as Freestanding Anodes for Potassium‐Ion Battery with High Capacity and Long Cycle Life. Advanced Materials Interfaces 2019, 7, (3).

Zhao, X.; Xiong, P.; Meng, J.; Liang, Y.; Wang, J.; Xu, Y., High rate and long cycle life porous carbon nanofiber paper anodes for potassium-ion batteries. J. Mater. Chem. A 2017, 5, (36), 19237-19244.

Zhang, S.; Xu, Z.; Duan, H.; Xu, A.; Xia, Q.; Yan, Y.; Wu, S., N-doped carbon nanofibers with internal cross-linked multiple pores for both ultra-long cycling life and high capacity in highly durable K-ion battery anodes. Electrochimica Acta 2020, 337.

Zhang, W.; Miao, W.; Liu, X.; Li, L.; Yu, Z.; Zhang, Q., High-rate and ultralong-stable potassium-ion batteries based on antimony-nanoparticles encapsulated in nitrogen and phosphorus co-doped mesoporous carbon nanofibers as an anode material. Journal of Alloys and Compounds 2018, 769, 141-148.

Xu, L.; Chen, X.; Guo, W.; Zeng, L.; Yang, T.; Xiong, P.; Chen, Q.; Zhang, J.; Wei, M.; Qian, Q., Co-construction of sulfur vacancies and carbon confinement in V5S8/CNFs to induce an ultra-stable performance for half/full sodium-ion and potassium-ion batteries. Nanoscale 2021, 13, (9), 5033-5044.

Gao, L.; Wang, Z.; Hu, H.; Cheng, H.; Zhang, L.; Yang, X., Nitrogen-doped carbon microfiber networks decorated with CuO/Cu clusters as self-supported anode materials for potassium ion batteries. Journal of Electroanalytical Chemistry 2020, 876.

Cheng, N.; Zhao, J.; Fan, L.; Liu, Z.; Chen, S.; Ding, H.; Yu, X.; Liu, Z.; Lu, B., Sb-MOFs derived Sb nanoparticles@porous carbon for high performance potassium-ion batteries anode. Chem Commun (Camb) 2019, 55, (83), 12511-12514.

Liu, D.; Yang, L.; Chen, Z.; Zou, G.; Hou, H.; Hu, J.; Ji, X., Ultra-stable Sb confined into N-doped carbon fibers anodes for high-performance potassium-ion batteries. Science Bulletin 2020, 65, (12), 1003-1012.

Sun, H.; Su, Y.; Yuan, F.; Li, Z.; Li, W.; Sun, H.; Li, Y.; Zhang, Y.; Wang, B., Fe2P nanoparticles-doped carbon nanofibers with enhanced electrons transfer capability as a self-supporting anode for potassium-ion battery. Electrochimica Acta 2022, 404.

Atangana Etogo, C.; Huang, H.; Hong, H.; Liu, G.; Zhang, L., Metal–organic-frameworks-engaged formation of Co0.85Se@C nanoboxes embedded in carbon nanofibers film for enhanced potassium-ion storage. Energy Storage Materials 2020, 24, 167-176.

Su, D.; Liu, L.; Liu, Z.; Dai, J.; Wen, J.; Yang, M.; Jamil, S.; Deng, H.; Cao, G.; Wang, X., Electrospun Ta-doped TiO2/C nanofibers as a high-capacity and long-cycling anode material for Li-ion and K-ion batteries. Journal of Materials Chemistry A 2020, 8, (39), 20666-20676.

Yang, M.; Su, D.; Zhang, W.; Wen, J.; Liu, W.; Luo, Q.; Liu, L.; Wang, X., Potassium storage mechanism of In2S3/C nanofibers as the anode for potassium ion batteries. Electrochimica Acta 2021, 400.

Zaidi, S. D. A.; Wang, C.; Jin, Y.; Zhu, S.; Yuan, H.; Yang, Y.; Chen, J., Single-nozzle electrospun core-shell MoS2@FexOy@CNF anodes for lithium and potassium-ion batteries. Journal of Alloys and Compounds 2020, 848.

Zhang, W.; Pang, W. K.; Sencadas, V.; Guo, Z., Understanding High-Energy-Density Sn4P3 Anodes for Potassium-Ion Batteries. Joule 2018, 2, (8), 1534-1547.

Downloads

Published

08-02-2023

Issue

Section

Articles

How to Cite

Research Progress of Constructing Anode Materials for Potassium Ion Batteries Based on Electrospinning Technology. (2023). Academic Journal of Science and Technology, 4(3), 8-14. https://doi.org/10.54097/ajst.v4i3.4778

Similar Articles

1-10 of 1110

You may also start an advanced similarity search for this article.