Implementation of Facial Recognition System for Metaverse using sbRIO FPGA and NB-IOT Module
DOI:
https://doi.org/10.54097/ajst.v6i1.8275Keywords:
Metaverse, FPGA, DeepFace, NB-IOT.Abstract
Facial recognition is crucial for identity verification in the metaverse, but it requires significant processing and operation overhead. Transmitting high-definition images to a server PC for processing is not feasible in low-capacity, low-bandwidth, or low-processor virtual environments. To overcome these challenges, we developed a narrow-bandwidth framework integrating embedded FPGA technology with a low-power NB-IOTcommunication module. Our approach uses a DNN-based DeepFace model with front face detection and 7-layer DNN convolution result extraction performed on the Zynq FPGA chip of sbRIO , reducing computational overhead and enabling efficient processing. By leveraging NB-IOT's remote transmission capabilities, classification data is transmitted back to the local server for comparison. Our proposed framework improves speed and accuracy while overcoming bandwidth and processing power challenges, making it a promising solution for facial recognition in immersive virtual environments.
Downloads
References
Pino, R., Ortiz, D., Perez, J., & Garcia, J. Development of a real-time dual-axis sun tracker for concentrator photovoltaic systems using an NI sbRIO platform. Solar Energy, 169(1), 1-10 (2018). DOI: https://doi.org/10.1016/j.solener.2018.04.022
Zhang, Y., Liu, J., Gao, Y., & Zhang, H. Joint Power Control and Resource Allocation for Device-to-Device Communications Underlaying NB-IoT System. IEEE Internet of Things Journal, 6(3), 4242-4250 (2019). DOI: https://doi.org/10.1109/JIOT.2019.2914914
Xu, L., Qiao, W., Wu, X., & Yang, Y. FPGA-based acceleration for deep neural networks: A survey. ACM Transactions on Reconfigurable Technology and Systems (TRETS), 13(2), 1-24 (2020). DOI: https://doi.org/10.1145/3373246
Salem, M., Nguyen, T., Banitalebi-Dehkordi, M., & Tewfik, A. DeepFace recognition using deep learning approach. 2018 IEEE International Conference on Electro Information Technology (EIT), 566-569 (2018). DOI: https://doi.org/10.1109/EIT.2018.8507250
Hsu, W.-H., & Chen, Y.-Y. A CMOS image sensor with 720p resolution and 60fps frame rate. IEEE Transactions on Consumer Electronics, 60(3), 453-459 (2014). DOI: https://doi.org/10.1109/TCE.2014.6926385.
Wang, Y., Zhou, X., Wang, C., Lu, W., & Liu, L. An NB-IoT Gateway Design Based on FPGA. IEEE Access, 7, 31036-31043 (2019). DOI: https://doi.org/10.1109/ACCESS.2019.2908374
Alhassan, A., Zhang, L., & Sangaiah, A. K. FPGA-based Image Processing for Real-Time Applications: A Review. IEEE Access, 7, 49854-49880 (2019). DOI: https://doi.org/10.1109/ACCESS.2019.2918226.
Zhang, X., Xie, L., Ma, X., Liu, S., & Liang, X. Back propagation neural network with rectified linear unit activation function and adaptive momentum optimizer. Neurocomputing, 275, 366-375 (2018). DOI: https://doi.org/10.1016/j.neucom.2017.07.031
LeCun, Y., Bengio, Y., & Hinton, G. Deep learning. Nature, 521(7553), 436-444 (2015). DOI: https://doi.org/10.1038/nature14539
Khan, N., Islam, M. R., & Das, D. LBP histogram based face recognition using PCA and SVM. International Journal of Image, Graphics and Signal Processing, 11 (6), 34-40 (2019). DOI: https://doi.org/10.5815/ijigsp.2019.06.04