Innovative Application of Biomass Material Energy Battery

Zixuan Deng¹, *

¹ North District, China Trade Square, Chang’an Middle Road, Beilin District, Xi’an, Shaanxi Province, China
* Corresponding author: Zixuan Deng (Email: dengzixuanmalai@163.com)

Abstract: This article provides an overview of the innovative research progress in the application of biomass materials in energy batteries. Biomass, as a plentiful renewable resource, has shown significant potential in various aspects of batteries, including electrodes, electrolytes, and packaging. Currently, various biomass electrode and electrolyte materials have made important advancements, leading to the development of various types of battery prototypes. Biomass batteries exhibit high specific capacity, good cycling stability, and cost-effectiveness advantages. However, widespread application still faces technical challenges such as cycle life. In the future, there is a need to strengthen basic research and technological breakthroughs, develop efficient manufacturing techniques, establish sustainable production systems, and promote the industrialization of biomass batteries. Biomass batteries have a promising future and will become an important choice for renewable energy storage.

Keywords: Biomass materials, Energy batteries, Electrode materials.

1. Introduction

Biomass materials in energy batteries represent an exciting field that combines renewable biomass materials with battery technology to achieve the electrochemical conversion and storage of energy. Biomass material energy batteries are an emerging and efficient way to harness biomass energy by utilizing bacteria to break down biomass and generate bioelectricity. They offer advantages such as pollution-free operation, high energy conversion efficiency, and a wide range of applications. This article explores the innovative applications of biomass materials in energy batteries, delving into their fundamental concepts, research advancements, and future development trends. Through in-depth research and innovation, biomass material energy batteries are poised to become a crucial component of the renewable energy sector, providing more sustainable and efficient solutions for the future of renewable energy.

2. Biomass Battery Research

2.1. Basic Principles of Biomass Material Energy Cells

The working principle of biomass material energy cells is mainly based on three aspects: electrode reactions, electrolyte conduction, and electrochemical reactions. As an electrode material, biomass undergoes oxidation-reduction reactions during the charge and discharge processes of the battery, enabling the storage and release of charges. As an electrolyte, biomass provides an ion-conductive environment inside the battery, allowing ions to migrate while blocking the electron pathway. The electrochemical potential difference formed between the two electrodes drives electrons from the negative electrode to the positive electrode. Ion movement in the electrolyte compensates for the charge, thereby achieving the conversion and output of electrical energy. By selecting suitable biomass materials for the electrodes and electrolyte, a battery system with a wide working voltage range and high specific capacity can be obtained (as shown in Figure 1). This working principle of biomass batteries provides the potential for their application in renewable energy storage.

The working principle of a biomass fuel cell can be illustrated using a typical reaction with glucose as the substrate, where oxygen serves as the electron acceptor. After the reaction is complete, glucose is entirely oxidized.

Anode Reaction:

\[\text{C}_6\text{H}_{12}\text{O}_6 + 6\text{H}_2\text{O} \rightarrow 6\text{CO}_2 + 24\text{H}^+ + 24\text{e}^- \] (1)

Cathode Reaction:

\[6\text{O}_2 + 24\text{H}^+ + 24\text{e}^- \rightarrow 12\text{H}_2\text{O} \] (2)

Overall Reaction:

\[\text{C}_6\text{H}_{12}\text{O}_6 + 6\text{O}_2 \rightarrow 6\text{CO}_2 + 6\text{H}_2\text{O} \] (3)

Figure 1. Schematic Representation of the Working Principle of Microbial Fuel Cells

2.2. Early Examples of Biomass Material Fuel Cells Research

Early research on biomass material fuel cells primarily
focused on microbial fuel cells. Kim et al. [1] investigated the electrochemical activity of several bacteria using cyclic voltammetry and assembled microbial fuel cells with these bacteria as catalysts. It is known that bacteria from the Geobacteraceae family can transfer electrons to solid electron acceptors like Fe(III) oxides while maintaining their growth. When electrodes are placed in such anaerobic environments, a continuous electric current is generated [2]. A team from the University of Massachusetts [3] discovered a microorganism capable of efficiently converting sugars into electricity. Booki Min et al. [4] invented planar batteries, which gained popularity among scientists for their novel battery structure. Derek R. Lovley et al. [5] replaced graphite rods with graphite felt and graphite foam as the anode of the battery, resulting in increased energy output. Park et al. [6] cultivated and enriched microorganisms with electrochemical activity using microbial fuel cells. These early studies laid the foundation for biomass microbial fuel cells and inspired further exploration of microbes and their electrochemical activity mechanisms.

2.3. Exploration and Application of Biomass Battery Prototypes

Researchers have endeavored to construct various prototypes of batteries using biomass materials to achieve electrochemical energy conversion and storage, and they have initiated preliminary applications. Representative achievements include renewable lithium-ion and sodium-ion batteries prepared from cellulose and lignin, flow batteries using chitin and seaweed as raw materials, and cellulose-based supercapacitors. Biomass battery prototypes demonstrate high specific capacity, good cycling stability, and cost-effectiveness advantages. Some studies have explored the application of biomass batteries in areas such as wearable electronic devices and sensors, yielding reliable and feasible results. While the construction of biomass battery prototypes has laid the foundation for practical applications, challenges related to battery manufacturing scalability and cycle life persist, necessitating ongoing research and technological breakthroughs to propel the industrialization of biomass batteries.

2.4. Existing Biomass Fuel Cell Structures

Currently, to optimize the electrical output of microbial fuel cells and meet various application scenarios, various microbial fuel cell structures have been developed, including upflow, cylindrical, and micro-type microbial fuel cells. To improve the utilization of the anode substrate, Lay et al. [39] constructed an upflow microbial fuel cell to recover electrical energy from wastewater. Wastewater is pumped into the anode chamber, and after microbial electricity generation at the anode, the treated wastewater is mixed with new incoming wastewater and returned to the anode chamber for secondary treatment. This recycling method enhances the utilization of organic matter in wastewater by the anode-producing microorganisms, resulting in increased electrical energy output from the upflow microbial fuel cell, with a maximum power density of (356±24) mW/m². However, due to the changing composition and flow conditions of the influent, the performance of upflow microbial fuel cells is somewhat unstable.

<table>
<thead>
<tr>
<th>Type</th>
<th>Structure</th>
<th>Characteristics</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upflow</td>
<td>H-Shaped</td>
<td>The cathode chamber and the anode chamber are placed horizontally, separated by an ion exchange membrane in between.</td>
<td>8</td>
</tr>
<tr>
<td>Micro-Type</td>
<td></td>
<td>Most have volumes of only a few microliters, with an ion exchange membrane separating the cathode chamber and the anode chamber.</td>
<td>10</td>
</tr>
<tr>
<td>Single-Chamber Type</td>
<td>Cubic</td>
<td>The structure consists of a single anode chamber with an air cathode attached to the side of the anode chamber.</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>Cylindrical</td>
<td>The cell has a cylindrical structure, and the cathode and anode are attached to the surface of the shell, providing a larger proton exchange area.</td>
<td>12</td>
</tr>
<tr>
<td>Deposit-Type</td>
<td></td>
<td>The anode is buried in the sediment, while the cathode is submerged in the upper water layer, using the sediment-water interface as the ion migration interface.</td>
<td>13</td>
</tr>
<tr>
<td>Micro-Type</td>
<td></td>
<td>Consists of only a single micro anode chamber, with an air cathode.</td>
<td>14</td>
</tr>
</tbody>
</table>

3. Application of Biomass Materials in Batteries

3.1. Biomass Materials as Battery Electrode Materials

Biomass materials have significant potential as electrode materials in batteries. Battery electrodes typically consist of materials with high electrical conductivity and good chemical...
stability to enable efficient charge transfer and energy storage. The application of biomass materials as battery electrode materials has garnered widespread research interest and encompasses various types of batteries, including lithium-ion batteries, sodium-ion batteries, supercapacitors, and biomass energy batteries. The use of biomass materials as battery electrode materials provides feasible solutions for renewable energy storage and holds the potential to drive sustainable energy transformation. Through continuous research and development, the performance of these biomass materials will be improved, making greater contributions to the development of battery technology.

3.2. Biomass Materials as Electrolytes

Electrolytes are another key component in batteries, used to conduct ions and separate the positive and negative electrodes to ensure the normal operation of the battery. The application of biomass materials as electrolytes has generated extensive research interest, especially in biomass energy batteries, supercapacitors, and other electrochemical energy storage devices. Biomass materials as electrolytes not only enhance battery performance but also help reduce dependence on harmful chemicals. These applications hold the potential to provide new pathways for the sustainable development of battery technology and environmentally friendly battery manufacturing. Through further research and development, biomass materials can become significant innovations in the field of battery electrolytes.

3.3. Application of Biomass Materials in Battery Packaging

Battery packaging is a crucial component of battery assemblies designed to protect internal components, ensure their safety and performance, and provide an external shell for the battery. The application of biomass materials in battery packaging offers potential environmental and sustainability advantages. It contributes to reducing reliance on harmful and non-renewable resources, enhances the sustainability of battery production, and reduces adverse environmental impacts.

4. Applications of Biomass Fuel Cells

Biomass material battery has a wide application prospect. The first is the field of renewable energy storage, which can be used to store the power output of intermittent photovoltaic and wind power generation to smooth its fluctuations and achieve stable power supply. Biomass batteries such as plant cellulose and lignin are very suitable for providing electric power for electric vehicles and electric bicycles, and realizing green travel with zero emissions. Due to the advantages of sustainable material source and low cost, biomass batteries are very suitable for providing power for portable electronic products such as mobile phones and wearable devices, and realizing their green power supply. In terms of distributed energy systems, biomass batteries can build microgrids in rural and remote areas and reduce dependence on grid infrastructure. Microbial fuel cells can achieve both organic pollutant treatment and power generation, providing dual functions. In general, biomass batteries have shown great application potential in many fields, which will promote the development of green and low-carbon technologies and realize the transformation of sustainable energy structure.

5. Innovative Technologies for Biomass Material Energy Batteries

5.1. Design of Biomass Material Nanostructures

The design of nanostructures in biomass materials is a crucial technology that can bring about several improvements by precisely controlling the morphology and structure of these materials. Firstly, nanostructures significantly increase the specific surface area of electrode materials, enhancing battery capacity and energy density. Secondly, well-designed nanostructures enhance the speed of electron and ion transport, reducing internal resistance within the battery, particularly at high current densities, leading to significantly improved battery efficiency. Nanostructure improvements in biomass materials also contribute to extending the battery's cycle life by slowing down the degradation of electrode materials and prolonging battery lifespan. This innovative technology can be achieved through various methods, including sol-gel processes, electrochemical deposition, template methods, and bioprocessing, providing highly customizable solutions for different types and applications of batteries. Through continuous research and innovation, the design of nanostructures in biomass materials is expected to provide robust support for the sustainable development of battery technology and the storage of renewable energy.

5.2. Functional Enhancement of Biomass Materials

To enhance the performance of biomass materials in batteries, researchers have carried out various functional enhancements, including surface modification, chemical modification, and material synthesis. These methods improve the electrochemical properties, stability, and reliability of biomass materials in batteries, enabling them to adapt to different types of batteries and application requirements.

5.3. Advanced Battery Manufacturing Techniques

Battery manufacturing techniques are also continually evolving to enhance battery performance and sustainability. Advanced manufacturing technologies such as printing, nanomanufacturing, and 3D printing have been applied in battery production. These methods enable large-scale production, cost reduction, and increased utilization of biomass materials. Innovative technologies will drive the performance of biomass material energy batteries, providing more efficient solutions for the storage and utilization of renewable energy.

6. Advantages and Challenges of Biomass Material Energy Batteries

6.1. Advantages of Biomass Material Energy Batteries

The most significant advantage of biomass energy batteries is their low combustion and lack of pollution, as the bioelectricity is directly derived from organic matter within living organisms [7]. Biomass materials are renewable and widely available. Their renewability makes them an ideal candidate for sustainable energy, with the potential to reduce dependence on finite fossil fuels. The production and use of biomass material energy batteries typically emit fewer
greenhouse gases and harmful substances, resulting in less environmental impact, which contributes to mitigating climate change and improving air quality. Biomass energy batteries have a broad range of applications, including wearable electronic devices, microgrid systems, and rural power supply, making them a versatile and adaptive solution for various energy needs. Biomass materials are often abundant and cost-effective, which can reduce the manufacturing cost of batteries.

6.2. Challenges and Limitations
Compared to some traditional energy batteries, biomass material energy batteries have lower energy density, limiting their competitiveness in certain high-power demand applications. Some biomass materials exhibit instability during storage and use, leading to a decrease in battery performance. While biomass materials are renewable, resource supply must be managed to ensure sustainability. Inappropriate resource harvesting and management may lead to ecological issues. The sustainability of biomass material energy batteries requires consideration of resource management, environmental impacts during the production process, and a comprehensive life cycle analysis of the batteries. Battery manufacturing and the disposal of spent batteries can have environmental impacts, necessitating a thorough environmental impact assessment to reduce adverse effects and improve environmental friendliness.

7. Future Trends
Biomass material energy batteries hold great promise for future development. Research efforts should focus on several key areas: firstly, strengthening fundamental research to develop novel high-performance biomass electrodes and electrolyte materials; secondly, advancing efficient large-scale manufacturing technologies; thirdly, promoting the application of biomass battery prototypes in renewable energy, photovoltaics, electric transportation, and other fields; fourthly, establishing sustainable and environmentally friendly biomass production and utilization systems; and fifthly, conducting full life cycle assessments to improve resource utilization efficiency and reduce environmental impacts. Additionally, international cooperation and exchange should be enhanced. Through these efforts, biomass material energy batteries are poised to become a key technology in optimizing energy structures and achieving green and low-carbon development. Their renewable nature and electrochemical energy storage advantages will play an increasingly important role in helping humanity establish a clean and sustainable energy system.

8. Conclusion
Biomass material energy battery technology is an emerging and significant field of research with the potential to drive sustainable development. Currently, this field has made some progress, demonstrating considerable application potential in areas such as electrodes, electrolytes, and battery prototype construction. However, there are still technical challenges to overcome, including cost reduction and improving lifespan. Future research should strengthen fundamental research on biomass materials, develop high-performance electrodes and electrolytes, and address practical application issues. Moreover, it is crucial to establish a sustainable biomass production and utilization system and implement full life cycle management. Only through concerted efforts from governments, industries, and academia can we expedite the industrialization of biomass batteries and make them a potent tool for green and low-carbon development.

References