Analysis on the Application of Artificial Intelligence in the Field of Logistics

Jialing Zhu

School of Management, Shanghai University, Shanghai 200444, China

Abstract: This paper discusses the wide application of artificial intelligence in the logistics industry, from intelligent distribution to intelligent transportation, through route optimization, automated warehouse management, demand forecasting, inventory management and other means, greatly improve logistics efficiency and reduce costs. Intelligent transport enhances traffic management, ensures road safety and optimizes resource utilization with road condition monitoring, autonomous driving and freight optimization technologies. In the face of challenges such as data security and privacy protection, artificial intelligence continues to promote the transformation of the logistics industry to a smarter and more efficient form. In the future, artificial intelligence will be further integrated into the logistics field, and through data-driven intelligent logistics management and applications in international logistics, more refined supply chain management, better resource scheduling and higher customer service standards will be achieved.

Keywords: Artificial intelligence; Intelligent logistics; Intelligent distribution; Intelligent transportation.

1. Introduction

Logistics is an important support for the development of modern society and economy, and artificial intelligence, as a cutting-edge technology, has a profound impact on the development of the logistics industry. The purpose of this paper is to discuss the application of artificial intelligence in the field of logistics, and analyze its impact on the development of logistics industry, the importance of logistics industry and the application prospect of artificial intelligence technology in the field of logistics.

2. Development of Artificial Intelligence

2.1. The definition of artificial intelligence

Artificial Intelligence (AI) is the ability to simulate, extend, and extend human intelligence to enable computer systems to perform complex tasks, including learning, reasoning, understanding, decision making, and interaction. The goal of artificial intelligence is to give machines a human-like level of intelligence that can perceive their environment, understand natural language, learn and adapt to new situations, and solve problems and perform tasks.

2.2. The development of artificial intelligence

The development process of artificial intelligence can be traced back to the 1950s and has experienced several key stages and important breakthroughs. The following is a brief overview of the development process of artificial intelligence:

Early reasoning and logic stage (1950s-1960s): In this stage, researchers mainly focus on how to use symbolic logic and reasoning rules to simulate human thinking processes. Representative achievements include symbolic reasoning systems for logical reasoning and problem solving. For example, Newell and Simon's Logic Theorist and so on.

The knowledge-oriented systems stage (1960s-1980s): In this stage, researchers began to focus on how to transform expert knowledge into a computer-processable form to build expert systems. Using expert knowledge base and reasoning mechanism, expert system can solve problems in specific fields. Representative achievements include MYCIN system and Expert system.

Connectionism and machine Learning phase (1980s-present): An important breakthrough in this phase was the introduction of the concepts of connectionism and machine learning. Connectionism emphasizes the simulation and parallel processing capabilities of neural networks, while machine learning focuses on how to train and optimize models through data. This has prompted AI research to shift from rule-based reasoning to data-driven approaches. Representative achievements include deep learning models, convolutional neural networks (CNN) and recurrent neural networks (RNN).

Reinforcement learning and Autonomous Intelligence stage (2000s-present): Reinforcement learning is a machine learning approach that learns through interaction with the environment how to take actions to maximize expected returns. Research in this area enables machines to learn and make decisions autonomously and achieve intelligent behavior in complex environments. Typical achievements include successful applications such as AlphaGo in gaming and control.

3. Application of Artificial Intelligence in The Field of Logistics

3.1. Intelligent distribution

In the field of intelligent distribution, the application of artificial intelligence can improve logistics efficiency, reduce costs and provide better services. Here are a few specific applications of AI in the field of smart delivery:

3.1.1. Route optimization and planning

With AI technology, massive amounts of order data, traffic information, and distribution networks can be analyzed and modeled to optimize delivery routes and plan the best delivery plans. The intelligent scheduling system based on real-time data can consider various factors, such as traffic congestion, distribution volume and distribution time window, etc., to
achieve the shortest path and the optimal distribution order.

3.1.2. Automated warehouse management

The application of artificial intelligence in warehouse management can improve the automation of warehouse operation. For example, using machine learning and computer vision technology, systems can be developed to automatically identify and classify goods, making the process of warehousing and unloading goods more efficient and accurate. In addition, robot operators can be applied to automatically pick, load and sort goods, thereby reducing labor costs and improving operational efficiency[45].

3.1.3. Forecast demand and inventory management

Artificial intelligence can forecast demand and manage inventory by analyzing historical data and market trends. By using machine learning algorithms, future demand and trends can be predicted, thereby helping enterprises to better formulate procurement plans and inventory management strategies, reducing inventory overstocking and stock shortage problems.

3.1.4. Logistics transportation monitoring and scheduling

Artificial intelligence can optimize the scheduling and route selection of logistics transportation by monitoring and analyzing information such as traffic conditions, meteorological conditions and order changes in real time. With the help of intelligent systems, transportation plans can be adjusted in time to cope with traffic congestion, sudden weather changes and other unforeseen factors to ensure timely delivery of goods.

In short, the application of artificial intelligence in the field of intelligent distribution can improve distribution efficiency, reduce costs, and optimize the quality of logistics services. Through technical means such as automation, forecasting and optimization, intelligent distribution systems can better adapt to market needs and changes, and provide users with a more efficient, accurate and convenient distribution experience.

3.2. Intelligent Transportation

The application of artificial intelligence in the field of intelligent transportation can improve the efficiency of traffic management, improve road safety, and optimize the utilization of transportation resources[39]. Here are a few specific applications of artificial intelligence in intelligent transportation.

3.2.1. Road condition monitoring and scheduling

AI can provide accurate information on road conditions by monitoring data such as traffic flow, road conditions and accident situations in real time, as well as analyzing historical data and predictive models. Based on this information, intelligent transport systems can adjust routes and traffic signals in real time to optimize traffic flow and reduce congestion and delays.

3.2.2. Autonomous driving technology

The application of artificial intelligence in autonomous driving technology is an important breakthrough in the field of intelligent transportation. Through deep learning and computer vision technology, intelligent vehicles can sense the road environment, recognize traffic signs and other vehicles, and make intelligent decisions and autonomous driving. Autonomous driving technology can improve traffic safety, reduce traffic accidents, and improve traffic efficiency.

3.2.3. Freight optimization and scheduling

By modeling and analyzing cargo demand, transportation network and logistics information, AI can optimize the routing, transportation mode and scheduling of freight. Using machine learning and optimization algorithms, intelligent transportation systems can help logistics companies reduce transportation costs, improve distribution efficiency, and reduce transportation time and energy consumption.

3.2.4. Safety and risk prediction

AI can analyze large amounts of traffic data and behavioral patterns for predicting traffic accident risks and safety hazards. By monitoring driving behavior and traffic violations, intelligent transport systems can detect potential risk factors and provide early warning and improvement measures to improve road safety.

3.2.5. Intelligent logistics management

AI can optimize logistics networks and warehouse management by integrating logistics data and analyzing supply chain information. By forecasting demand, reducing inventory, and optimizing scheduling, intelligent logistics systems can improve logistics efficiency and customer satisfaction, and reduce logistics costs.

In short, the application of artificial intelligence in the field of intelligent transportation can improve the efficiency of traffic management, improve road safety, and optimize the utilization of transportation resources. Through real-time monitoring and predictive analysis, intelligent transportation systems can provide accurate road condition information and scheduling decisions, providing people with more efficient, safe and sustainable development.

4. Advantages and Challenges of Artificial Intelligence in Logistics

4.1. Data security and privacy protection

AI has many advantages in the field of logistics, but it also faces some challenges.

Advantages: Artificial intelligence in the field of logistics can provide more accurate prediction and decision support through the analysis and mining of large-scale data. It can process massive logistics data, including order information, transportation trajectory, customer demand, etc., to optimize logistics operations and improve service quality. In addition, AI technology can also identify and respond to potential risks and anomalies, thereby improving logistics security.

The challenge: Data security and privacy protection is an important challenge in the use of AI technology. The field of logistics involves a lot of sensitive data, such as customer information, shipping routes and the value of goods. Ensuring the security and privacy of your data is Paramount. At the same time, for logistics enterprises involved in cross-border transportation, it is also necessary to comply with the data of different countries and regions.

4.2. Technical application and management issues

Advantages: The application of artificial intelligence can help logistics enterprises achieve more accurate demand forecasting, accurate scheduling and optimized resource utilization. It can improve the visualization and management
of logistics networks, improve transportation efficiency and customer satisfaction.

Challenges: In practical applications, logistics companies need to solve some technical application and management problems. Choosing the right AI technology and algorithm is crucial to solving specific logistics problems.

5. Future Development Trends in The Field of Logistics

5.1. Integration of artificial intelligence and logistics

In the future, artificial intelligence technology will be more deeply integrated with the logistics field to achieve more efficient and intelligent logistics management. Logistics companies will widely adopt automation, intelligent equipment and robotics, such as autonomous vehicles, unmanned warehouses and intelligent robotic arms, to improve operational efficiency and reduce labor costs\(^6\). At the same time, artificial intelligence will be combined with big data, the Internet of Things and cloud computing and other technologies to achieve real-time monitoring, intelligent scheduling and predictive analysis, and further improve logistics efficiency.

5.2. Data-driven intelligent logistics management

Data-driven intelligent logistics management will become an important trend in the logistics industry\(^3\). Through big data analysis and artificial intelligence technology, logistics enterprises can extract valuable information from massive logistics data to achieve refined transportation planning and resource allocation. The logistics network will become more visual and intelligent, and can monitor the flow of goods, traffic conditions and transportation environment in real time, providing real-time decision support and early warning functions. At the same time, logistics enterprises will also achieve the integration and optimization of the supply chain through data sharing and cooperation, and improve the overall logistics efficiency and service quality. With the growth of global trade and the complexity of international logistics, logistics companies need to cope with diverse demands and changing environments.

5.3. Application of artificial intelligence in international logistics

The application of artificial intelligence in international logistics will also become a future development trend\(^6\). AI can help logistics companies better handle the challenges of international transportation, such as customs processes, cargo tracking, and supply chain visualization. Through automated customs operations and intelligent risk prediction, artificial intelligence can improve the efficiency and safety of international logistics and reduce operational risks and costs.

In general, the development trend of the logistics field in the future will revolve around the deep integration of artificial intelligence and logistics, data-driven intelligent logistics management and the application of artificial intelligence in international logistics. These trends will drive the logistics industry towards intelligent, efficient and sustainable development.

References


