Abstract: Deep learning frameworks are mainly divided into pytorch in academia and tensorflow in industry, where pytorch is a dynamic graph and tensor flow is a static graph, both of which are essentially directed and loopless computational graphs. In TensorFlow, data input into the model requires a good computational graph structure to be executed, and static graphs have more optimization methods and higher performance. The node of the graph is OP and the edge is tensor. The static diagram is fixed after the compilation is completed, so it is easier to deploy on the server. How to compile a static graph. It is found that in more optimization methods and higher performance. The node of the graph is OP and the edge is tensor. The static diagram is fixed after the compilation is completed, so it is easier to deploy on the server. How to compile a static graph. It is found that in optimization challenges in translating an ML program, targeting small sub-programs. ML compilers address multiple challenges in translating an ML program, typically presented as a tensor computation graph, into an efficient executable for a hardware target. Recent studies have demonstrated that search-based autotuning techniques can generate code with performance close to optimal. However, autotuning demands a relatively substantial resource investment compared to traditional heuristics-based compilers. Consequently, several methodologies incorporate a learned cost model to expedite autotuning.

This research strives to contribute to the field of AI model runtime prediction and the application of graph neural networks. By exploring the potential of graph neural network models in comparison to existing methods, we aim to minimize search time and enhance prediction accuracy. This endeavor may pave the way for more efficient model compilation configuration selection and optimization.

1. Introduction

Compilers frequently employ performance models for tackling optimization problems [1]. Building precise cost models to forecast execution times on contemporary processors is exceedingly challenging and time-consuming. This difficulty arises from the intricate nature of processors, particularly when detailed hardware design information is unavailable. The performance model is also utilized by the compiler autotuner to assess candidate configurations within the search space [2]. However, formulating an accurate analytic model for program performance on modern processors is both daunting and time-intensive. This challenge is attributed to the complexity of the underlying processor architecture, compilers, and their intricate interactions.

In this investigation, we utilized the TPUGRAPHS dataset publicly available from Pho Thi Linh M. et al. [3]. Various recent methodologies leverage machine learning (ML) to acquire performance prediction models. Nonetheless, datasets for program performance prediction are limited, mainly targeting small sub-programs. ML compilers address multiple optimization challenges in translating an ML program, typically presented as a tensor computation graph, into an efficient executable for a hardware target. Recent studies have demonstrated that search-based autotuning techniques can generate code with performance close to optimal. However, autotuning demands a relatively substantial resource investment compared to traditional heuristics-based compilers. Consequently, several methodologies incorporate a learned cost model to expedite autotuning.

This research strives to contribute to the field of AI model runtime prediction and the application of graph neural networks. By exploring the potential of graph neural network models in comparison to existing methods, we aim to minimize search time and enhance prediction accuracy. This endeavor may pave the way for more efficient model compilation configuration selection and optimization.

2. Related Work

Numerous academic works leverage machine learning techniques for code optimization. Our focus centers on papers employing machine learning to construct cost models for the prediction of program execution times. The ensuing studies illustrate pivotal advancements in this dynamic domain:

- Ithemal employs a hierarchical recurrent neural network to approximate the throughput of x86-64 basic blocks [4]. With an average error rate of 9%, Ithemal adeptly estimates throughput. While its emphasis lies on small loop-free programs, represented sequentially as instruction sequences executing on intricately designed processors.

- AutoTVM adopts a distinct form of a cost model to steer its search for a rapid configuration in machine learning programs [7]. Unlike estimating runtime directly, AutoTVM ranks candidates. Furthermore, AutoTVM models exhibit limited generalization across kernels and are trained for per-kernel search within a kernel-specific parameter set.

Graphs offer a natural representation for real-world data with relational structures, such as social networks, molecular networks, and webpage graphs. Recent endeavors extend deep neural networks (DNNs) to extract high-level features...
from graph-structured datasets. These resulting architectures, known as graph neural networks (GNNs), have recently demonstrated state-of-the-art performance in various graph-related tasks, encompassing vertex classification, graph classification, and link prediction.

Noteworthy efforts have been directed towards developing machine learning-based models for both absolute and relative runtime estimation. Huang et al. [8] introduces sparse polynomial regression to predict program execution time using hand-crafted features of high-level programs. Dubach et al. [9] employs neural networks with hand-crafted features to estimate the speedup between two code sequences. Game Time utilizes SMT solvers to generate inputs and employs game-theoretic approaches to predict the runtime distribution of programs.

At any rate, these models necessitate manual feature engineering, and the predictions for runtime occur at a more general granularity, such as the entire program level. Consequently, we are in the process of constructing a learned cost model through a neural network, a significantly less labor-intensive approach compared to manual development. In contrast, our model autonomously acquires the capability to predict the throughput of basic blocks, incorporating minimal architectural knowledge into the model.

3. Methodology

In this section, we provide a comprehensive overview of the approach we have taken in our research focused on model runtime prediction. The main goal is to develop a reliable predictive model for model optimal configuration prediction using TPUGRAPHS data.

The cornerstone of our approach is the use of advanced machine learning techniques, with a special emphasis on the application of graph neural networks (GNNs). This choice is driven by the potential of graph neural networks to discern complex patterns, which in irregular graph data is a critical aspect of accurately predicting the optimal configuration for the model to run.

To the best of our knowledge, there is only one public study by Phothilimthana’s team that has been done on the TPUGRAPHS dataset so far [3]. So, to ensure rigorous evaluation, the performance of the GNN model is juxtaposed with the established method for optimal configuration prediction, providing valuable insights into the effectiveness of our approach.

3.1. Model Architectures

The chosen Graph Neural Network (GNN) architecture is meticulously designed to address the intricacies of specific task. The overall architecture of the model is shown in Figure 1.

Node features consist of two parts as shown in Figure 1. The first part is an opcode id, i.e., type of tensor operation (such as matrix multiplication). Our models map an opcode id to an opcode embedding via an embedding lookup table. The opcode embedding is then concatenated with the rest of the node features as inputs to a GNN. We combine the node embeddings produced by the GNN to create the embedding of the graph using a simple pooling reduction. The resulting graph embedding is then linearly transformed into the final scalar output by a feedforward layer. Prior work [10] has studied alternative models, including LSTM and Transformer, and shown that GNNs offer the best performance.

It is worth mentioning that the graph neural network (GNN) of the graph structure in our model is implemented by means of message passing, and the multi-layer graph network is used to complete the point classification task [11]. In order to intuitively understand graph-structured convolutional neural networks, traditional image convolution superimposes pixels with different weights around a pixel, while graph-structured convolutional superimposes neighbors around a node, stacked together according to different weights.

Calculation formula for graph structure neural network:

$$H^{(l+1)} = \sigma \left(D^{-\frac{1}{2}} A D^{-\frac{1}{2}} H^{(l)} W^{(l)} \right)$$ (1)

where A is the adjacency matrix, D is related to the degree matrix, and H is the node representation of each layer.

Message Passing Mechanism: Message delivery consists of two steps, namely, the generation of features from the source node on the edge to the target node, and the aggregation of the received features by the target node [12]. When the neighbor node is adjacent to a large number of nodes, the importance of the neighbor node to the target node should be smaller, so the method of weighting the edge is adopted. The attention-based weighting and feature aggregation formulas are as follows:

The attention calculation method is as follows:

$$\alpha_{ij} = \exp(\text{LeakyReLU}(\gamma \cdot W h_i, W h_j))$$ (2)

where \(\cdot \) represents the connection operation, which LeakyReLU is the activation function.

Feature aggregation calculation method:

$$h_j = \sigma(\sum_{i \in N_j} \alpha_{ij} W h_i)$$ (3)

where σ is the activation function.

3.2. DataSet Introduction

The data in this dataset is obtained from classical open-
source models such as ResNet, Mask R-CNN and various types of transform models in the process of various tasks, and the dataset is further analyzed, and each data sample contains a computational graph, a compilation configuration, and the time to run on the TPU under the configuration. The TPUGRAPHS dataset can be divided into 5 sections, and the statistics are shown in Table 1.

<table>
<thead>
<tr>
<th>Collection</th>
<th>Core (Sub)Graphs</th>
<th>Avg.Nodes Configs per Graph</th>
<th>Total Graphs +Configs Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>tiles</td>
<td>6988</td>
<td>40</td>
<td>1,842</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>12,870,077</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>12,870,077</td>
</tr>
<tr>
<td>Layout:xla:random</td>
<td>11,648</td>
<td>908</td>
<td>908,561</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1,115,709</td>
</tr>
<tr>
<td>Layout:xla:default</td>
<td>78</td>
<td>14,105</td>
<td>10,147</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>771,496</td>
</tr>
<tr>
<td>Layout:nlp:random</td>
<td>66,089</td>
<td>16,125</td>
<td>16,135,731</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>15,479,038</td>
</tr>
<tr>
<td>Layout:nlp:default</td>
<td>244</td>
<td>5,659</td>
<td>56,534</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>13,285,415</td>
</tr>
</tbody>
</table>

3.3. Data Analysis and Preprocessing

We conducted a thorough analysis of runtime data from open-source machine learning programs, focusing on popular model architectures such as ResNet, EfficientNet, Mask R-CNN, and Transformer. This field can be seen as the target of the regression task if you want to predict the runtime directly. Following shows the distribution of config runtime of the demo example. As can be observed, there seems to exist multiple modals in different regions in default search strategy.

For node opcodes, operation codes (opcodes) span across a wide range from 0 to 100. Regarding config runtime, the runtime values are distributed between 2.15×10^7 and 2.31×10^7. Although there is no distinct peak, the data exhibits a slight right-skew. This Exploratory Data Analysis (EDA) has unveiled the fundamental characteristics and distributions of each feature and the target variable.

3.4. Loss Function

To guide the optimization process, we can train the model using regression losses (e.g., Mean Square Error (MSE)) or ranking losses (e.g., ListMLE [13]). Calculate the ranking loss between pairs of samples within the same plot in the same batch and reduce the loss of different plots in the batch to get the total loss.

The formula for calculating MSE is as follows:

$$MSE = \frac{1}{n} \sum \left(y - \bar{y} \right)^2$$ \hspace{1cm} (4)

where y represents the true labels, \bar{y} represents the predicted probabilities, and n is the total number of samples.

MSE, as a regression loss, is not a good measure of the difference between the predicted optimal top K configuration of the model and the true optimal top K configuration when doing ordered prediction tasks. Therefore, the layout and tile models use the ListMLE loss function, and the ListMLE is calculated as follows:

$$ListMLE = \left(\pi_{y} \left| s \right. \right) = -\log \left(P \left(\pi_{y} \mid s \right) \right)$$ \hspace{1cm} (5)

where $P \left(\pi_{y} \mid s \right)$ is the Plackett-Luce probability of permutation π_y conditional on fraction s, which randomly breaks the relationship of the number of items y sorted by correlation labels.

3.5. Evaluation Metrics

For both tile and layout data, we consider using a combination of two different evaluation metrics, as shown below.

3.5.1. Tile Evaluation

For tile configuration ranking evaluation, we use Ordered Pair Accuracy (OPA) [14] as a validation metric to select the best model checkpoint, and top-K error as an evaluation metric as they evaluate the quality of ranking. We define a top-K error to reflect how much slower the top-K configurations predicted by the model is from the actual fastest configuration as follows:

$$\min_{i \in A} \left(\text{y}_{i} - \text{y}_{\min} \right)$$ \hspace{1cm} (6)

3.5.2. Layout Evaluation

For the layout configuration ranking evaluation, the Kendall rank correlation coefficient is used, that is, the degree to which the configuration ranking predicted by the model corresponds to the actual ranking at runtime.

$$\tau = \frac{(\text{number of concordant pairs}) - (\text{number of discordant pairs})}{(\text{number of pairs})}$$ \hspace{1cm} (7)

4. Experiment Results

Observing the above results, it is found that the model has the best effect for tile training and prediction. For layout data,
the training and prediction effect of random in NLP is significantly greater than that of other data in layout, and the accuracy rate is improved by about 20%–30%. For the data in the third and fourth parts, the accuracy of the model on the validation set is higher than that of the training set.

<table>
<thead>
<tr>
<th>data</th>
<th>train</th>
<th>test</th>
</tr>
</thead>
<tbody>
<tr>
<td>tiles</td>
<td>0.8785</td>
<td>0.8622</td>
</tr>
<tr>
<td>Layout:xla:random</td>
<td>0.6841</td>
<td>0.5285</td>
</tr>
<tr>
<td>Layout:xla:default</td>
<td>0.5631</td>
<td>0.5887</td>
</tr>
<tr>
<td>Layout:nlp:random</td>
<td>0.8197</td>
<td>0.8387</td>
</tr>
<tr>
<td>Layout:nlp:default</td>
<td>0.5036</td>
<td>0.4841</td>
</tr>
</tbody>
</table>

These results reinforce the potential of advanced deep learning techniques, especially GNN models, to improve the accuracy of model runtime predictions. GNNs' ability to capture complex patterns in high-dimensional data has proven to help achieve such high prediction accuracy.

5. Conclusion

In the pursuit of determining the optimal compilation configuration for a model, this study advocates a model architecture founded on a graph neural network. The achieved test effect on the test set is noteworthy, reaching 0.417. The ability to predict the best compilation configuration enhances the efficiency of AI model execution, thereby mitigating overall time and resource consumption. Additionally, an attention mechanism is incorporated to assign weights to neighbors, thereby enhancing the model's generalization ability and overall performance. Employing models for optimizing compiler configurations serves the dual purpose of enhancing running speed and providing predictive insights into each model's behavior under optimal compiler configurations. This comprehensive approach integrates aspects of performance optimization, machine learning, and graph data processing. The utilization of Graph Neural Networks (GNNs) in performance optimization extends to various domains, including combinatorial optimization, such as the Google Brain team's application of GNNs to optimize power, area, and performance in new hardware chip blocks. The robust learning and representation capabilities of GNNs position them as valuable tools across diverse fields.

The introduction should provide background information (including relevant references) and should indicate the purpose of the manuscript. Cite relevant work by others, including research outside your company. Place your work in perspective by referring to other research papers. Inclusion of statements at the end of the introduction regarding the organization of the manuscript can be helpful to the reader.

In this template, the “Styles” menu should be used to format your text if needed. Highlight the text you want to designate with a certain style, and then select the appropriate name on the Style menu. The style will adjust your fonts and line spacing. Use italics for emphasis; do not underline as shown in Table 1.

References