The Collaborative Application of Internet of Things and Artificial Intelligence in Smart Logistics

Xiangpeng Liu
Philippine Christian University, Manila 1004, Philippine

Abstract: This article introduces the current application status and development trends of the Internet of Things and artificial intelligence technology in smart logistics, analyzes how the Internet of Things and artificial intelligence technology work together to achieve efficient operation of smart logistics systems, as well as the challenges and opportunities they face. This article believes that the Internet of Things and artificial intelligence technology are the core driving forces of smart logistics. They can achieve informatization, automation, and intelligent processing in various aspects of logistics, improve logistics efficiency, reduce logistics costs, and promote green and sustainable development of logistics.

Keywords: Internet of Things; Artificial Intelligence; Smart Logistics; Collaborative Applications.

1. Introduction
Logistics refers to the general term for the transportation, storage, distribution, packaging, and other activities of goods from their place of origin to their place of consumption. It is an important component of modern social and economic activities. With the development of globalization, e-commerce, intelligent manufacturing, etc., the demand for logistics is increasing day by day. The logistics industry is also facing challenges such as improving service quality, reducing operating costs, and reducing environmental pollution. For this reason, smart logistics has emerged, which refers to the use of new generation information technologies such as the Internet of Things, artificial intelligence, big data, and cloud computing to digitize, network, and intelligently transform various links of logistics, achieve optimized configuration, dynamic scheduling, real-time monitoring, intelligent decision-making, and other functions of logistics, and improve the efficiency, safety, reliability, and environmental protection of logistics. Smart logistics is the direction of modern logistics development and an inevitable choice for the transformation and upgrading of the logistics industry.

The Internet of Things and artificial intelligence are the two supporting technologies for smart logistics, and their collaborative application in smart logistics is the key to achieving smart logistics. The Internet of Things refers to the technology that connects various physical devices, items, personnel, etc. through the Internet to achieve information exchange and communication. Artificial intelligence refers to the technology that enables machines to possess human intelligence, including machine learning, deep learning, natural language processing, computer vision, speech recognition, and so on. The collaborative application of the Internet of Things and artificial intelligence can enable smart logistics systems to have abilities such as perception, learning, understanding, reasoning, decision-making, and execution, achieving efficient operation of logistics.

The main purpose of this article is to explore the collaborative application of the Internet of Things and artificial intelligence technology in smart logistics, analyze how they work together, as well as the challenges and opportunities they face, in order to achieve efficient operation of smart logistics systems.

2. The Application Status of Internet of Things and Artificial Intelligence Technology in Smart Logistics

The application of Internet of Things and artificial intelligence technology in smart logistics covers various aspects of logistics, including warehousing, packaging, transportation, distribution, customer service, etc.

2.1. Warehousing
Warehousing is an important part of logistics, involving operations such as storage, picking, packaging, loading and unloading of goods. The application of Internet of Things and artificial intelligence technology in the warehousing process mainly includes the following aspects:
1. Warehouse management: Internet of Things technology can install various sensors, cameras, scanners, and other devices inside the warehouse to collect real-time data on temperature, humidity, lighting, inventory, and storage locations. Artificial intelligence technology can analyze warehouse data to achieve intelligent layout, zoning, inventory, and warning functions.
2. Storage equipment: Internet of Things technology can install various sensors, locators, communicators and other devices on storage equipment to collect real-time data on the location, status, operation, and faults of storage equipment. Artificial intelligence technology can achieve intelligent scheduling, maintenance, and upgrading of storage equipment through the analysis of storage equipment data.
3. Warehouse operations: Internet of Things technology can install various electronic tags, handheld terminals, smart glasses and other devices on warehouse workers and goods to collect real-time data on the location, status, tasks, efficiency, and other aspects of warehouse workers and goods. Artificial intelligence technology can analyze warehouse operation data to achieve intelligent allocation, guidance, assistance, and optimization of warehouse operations.

2.2. Packaging
Packaging is an important component of logistics and also an important added value of logistics. The application of
Internet of Things and artificial intelligence technology in the packaging process mainly includes the following aspects:

1. Intelligent packaging machine: The intelligent packaging machine can automatically select suitable packaging materials, packaging methods, packaging sizes, etc. based on the shape, size, weight, etc. of the goods. It can also monitor the operation status and consumption of packaging materials in real time through Internet of Things technology, achieving intelligent maintenance and optimization adjustment of the packaging machine.

2. Intelligent packaging materials: Intelligent packaging materials can automatically adjust the performance of packaging materials based on the characteristics of goods and changes in the environment, such as temperature, humidity, odor, color, etc., to protect the safety and quality of goods.

3. Smart packaging labels: Smart packaging labels can achieve automatic recognition, positioning, tracking, counting and other functions of packaging labels through electronic tags (such as RFID, NFC, etc.), achieving full process visual management of packaging labels.

2.3 Transportation

Transportation is the core link of logistics and an important factor affecting logistics costs and efficiency. The application of Internet of Things and artificial intelligence technology in the transportation sector mainly includes the following aspects:

1. Goods management: IoT technology can achieve automatic identification, positioning, tracking, counting, and other functions of goods by attaching electronic labels to them, achieving full process visual management of goods. Artificial intelligence technology can achieve intelligent classification, matching, sorting, loading and other functions of goods through the analysis of cargo data.

2. Vehicle management: Internet of Things technology can collect real-time data on the vehicle's position, speed, fuel consumption, temperature, humidity, vibration, etc. through sensors, locators, communicators, and other devices installed on the vehicle. Artificial intelligence technology can achieve intelligent scheduling, route planning, driving assistance, safety warning, and other functions through the analysis of vehicle data.

2.4 Delivery

Delivery is the last mile of logistics and one of the most important links in logistics. The application of Internet of Things and artificial intelligence technology in the delivery process mainly includes the following aspects:

1. Delivery management: IoT technology can collect real-time data on the location, status, road conditions, temperature, humidity, and other information of delivery vehicles and goods. Artificial intelligence technology can analyze delivery data to achieve functions such as route planning, load optimization, risk warning, and efficiency evaluation for delivery.

2. Delivery service: IoT technology can achieve automatic recognition, verification, unlocking, and access functions for delivery points and clients by installing various scanners, smart locks, smart cabinets, and other devices at delivery points and clients, achieving unmanned, paperless, and contactless delivery. Artificial intelligence technology can achieve functions such as demand prediction, service recommendation, and customer feedback for delivery through the analysis of delivery service data.

2.5 Customer Service

Customer service is an important interface for logistics and also a significant manifestation of logistics value. The application of Internet of Things and artificial intelligence technology in customer service mainly includes the following aspects:

1. Intelligent customer service equipment: Intelligent customer service equipment can achieve wireless connection, remote control, real-time updates and other functions of customer service through Internet of Things technology, providing customers with convenient, fast, and secure services. Intelligent customer service devices can also use artificial intelligence technology to achieve intelligent recognition, intelligent recommendation, intelligent interaction and other functions of customer service, providing customers with novel, interesting, and useful services.

2. Intelligent customer service platform: The intelligent customer service platform can achieve multi-channel, multi terminal, and multi scenario access to customer service through Internet of Things technology, providing customers with comprehensive, full time, and full coverage services. The intelligent customer service platform can also use artificial intelligence technology to achieve functions such as intelligent allocation, intelligent collaboration, and intelligent evaluation of customer service, improving the efficiency, quality, and satisfaction of customer service.

3. Intelligent customer service robots: Intelligent customer service robots can engage in natural, smooth, and friendly conversations with customers through technologies such as natural language processing, speech recognition, and computer vision, providing services such as consultation, inquiry, complaints, and suggestions. Intelligent customer service robots can also use IoT technology to obtain real-time customer information, needs, feedback, etc., achieving personalized and precise customer service.

3. The Collaboration between the Internet of Things and Artificial Intelligence Technology Enables Efficient Operation of Smart Logistics Systems

The collaborative application of the Internet of Things and artificial intelligence technology in smart logistics refers to the process of collecting, transmitting, and sharing logistics data using Internet of Things technology, analyzing, processing, and optimizing logistics data using artificial intelligence technology, and achieving intelligent management and service of logistics. How the Internet of Things and artificial intelligence technology work together to achieve efficient operation of smart logistics systems mainly includes the following aspects:

1. Data layer: The data layer is the foundation of the collaborative work of the Internet of Things and artificial intelligence technology, and is the core resource of smart logistics systems. The data layer mainly involves the collection, storage, transmission, and sharing of logistics data. It requires the use of Internet of Things technology, such as sensors, locators, communicators, electronic tags, etc., to achieve real-time perception, positioning, tracking, and recognition of logistics objects (such as vehicles, goods, personnel, etc.), forming a massive amount of logistics data. At the same time, it is necessary to utilize technologies such
as cloud computing and big data to achieve secure storage, high-speed transmission, and effective sharing of logistics data, providing a data foundation for the analysis and processing of logistics data.

2. Intelligent layer: The intelligent layer is the key to the collaborative work of the Internet of Things and artificial intelligence technology, and is the core capability of smart logistics systems. The intelligent layer mainly involves the analysis, processing, and optimization of logistics data, and requires the use of artificial intelligence technologies such as machine learning, deep learning, natural language processing, computer vision, speech recognition, etc. to achieve intelligent analysis and processing of logistics data, forming logistics knowledge and rules. At the same time, it is necessary to utilize artificial intelligence technologies such as optimization algorithms, decision algorithms, recommendation algorithms, etc. to achieve intelligent optimization and decision-making of logistics data, and form logistics plans and strategies.

3. Application layer: The application layer is the purpose of collaborative work between the Internet of Things and artificial intelligence technology, and is the core value of smart logistics systems. The application layer mainly involves the display, execution, and feedback of logistics data, and requires the use of Internet of Things technology, such as smart devices, intelligent platforms, intelligent terminals, etc., to achieve functions such as visual display, intelligent execution, and real-time feedback of logistics data, forming logistics services and management. At the same time, it is necessary to utilize artificial intelligence technologies such as intelligent customer service, intelligent prediction, intelligent recommendation, etc. to achieve intelligent service and management of logistics data, forming logistics value and benefits.

4. The Challenges Faced by the Internet of Things and Artificial Intelligence Technology in Smart Logistics

The application of the Internet of Things and artificial intelligence technology in smart logistics has brought about significant efficiency improvements and value creation, but it also faces some challenges and problems that require further research and solutions.

1. Data security and privacy protection: The application of Internet of Things and artificial intelligence technology has greatly increased the collection, transmission, storage, analysis, and sharing of logistics data, while also increasing the security risks of data and the possibility of privacy leakage. How to ensure the integrity, reliability, availability, controllability, etc. of logistics data, how to protect the privacy rights and interests of customers, enterprises, governments, and other parties involved in logistics data, and how to prevent the tampering, theft, abuse, etc. of logistics data are ethical challenges for the development of smart logistics.

2. Formulation of technical standards and specifications: The application of Internet of Things and artificial intelligence technology involves multiple technologies, devices, platforms, and scenarios, and requires unified technical standards and specifications to guide and regulate. How to develop technical standards and specifications that meet the characteristics and needs of smart logistics, how to coordinate the interests and demands of all parties, and how to promote the promotion and implementation of technical standards and specifications are the technical challenges for the development of smart logistics.

3. Talent cultivation and quality improvement: The application of Internet of Things and artificial intelligence technology has greatly increased the technological content and knowledge density of the logistics industry, requiring corresponding talents to support and drive. How to cultivate and introduce logistics professionals with backgrounds and capabilities in the Internet of Things and artificial intelligence technology, how to improve the technical level and innovation ability of logistics practitioners, and how to build and improve the training and incentive mechanism for logistics talents are the talent challenges for the development of smart logistics.

5. Conclusion and Recommendations

Starting from the concepts and characteristics of the Internet of Things and artificial intelligence technology, this article analyzes the significance, current situation, and challenges of their collaborative application in smart logistics, aiming to provide some theoretical and practical references for the development of smart logistics.

1. The collaborative application of the Internet of Things and artificial intelligence technology is the core driving force of smart logistics. It can achieve the intelligence, digitization, and networking of logistics, improve the efficiency, quality, safety, green, innovation and other levels of logistics, and bring huge value and contribution to the sustainable development of the logistics industry and social economy.

2. The collaborative application of the Internet of Things and artificial intelligence technology needs to follow the logic of the data layer, intelligent layer, and application layer, to achieve intelligent management and services for the entire process of logistics data collection, transmission, sharing, analysis, processing, optimization, display, execution, feedback, etc., and to build a smart logistics network that covers the world, connects all parties, and operates efficiently.

3. The collaborative application of the Internet of Things and artificial intelligence technology has shown broad application prospects and potential in multiple fields and industries such as e-commerce, manufacturing, healthcare, and agriculture. By building intelligent logistics systems such as intelligent warehousing, intelligent transportation, and intelligent customer service, efficient, convenient, and low-cost logistics services are provided for various industries.

4. The collaborative application of the Internet of Things and artificial intelligence technology also faces challenges and problems such as data security and privacy protection, formulation of technical standards and specifications, talent cultivation and quality improvement. It is necessary to strengthen relevant research and solutions, establish sound legal regulations, technical standards, talent cultivation, social supervision and other mechanisms, and ensure the healthy development of smart logistics.

5. The collaborative application of the Internet of Things and artificial intelligence technology still needs further innovation and exploration. It is necessary to strengthen interdisciplinary, cross disciplinary, and cross industry cooperation and communication, fully leverage the advantages and potential of the Internet of Things and artificial intelligence technology, continuously launch more smart logistics application scenarios and products, and bring
more surprises and benefits to the development of the logistics industry and socio-economic development.

References


